145 Repositories
Python normalizing-flow Libraries
Official code for "Towards An End-to-End Framework for Flow-Guided Video Inpainting" (CVPR2022)
E2FGVI (CVPR 2022) English | 简体中文 This repository contains the official implementation of the following paper: Towards An End-to-End Framework for Flo
[CVPR 2022] Deep Equilibrium Optical Flow Estimation
Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*
Flow control is the order in which statements or blocks of code are executed at runtime based on a condition. Learn Conditional statements, Iterative statements, and Transfer statements
03_Python_Flow_Control Introduction 👋 The control flow statements are an essential part of the Python programming language. A control flow statement
The best way to learn Python is by practicing examples. The repository contains examples of basic concepts of Python. You are advised to take the references from these examples and try them on your own.
90_Python_Exercises_and_Challenges The best way to learn Python is by practicing examples. This repository contains the examples on basic and advance
Scalable Optical Flow-based Image Montaging and Alignment
SOFIMA SOFIMA (Scalable Optical Flow-based Image Montaging and Alignment) is a tool for stitching, aligning and warping large 2d, 3d and 4d microscopy
Provide baselines and evaluation metrics of the task: traffic flow prediction
Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction. Due to technical reasons, I did not fork their code. Introd
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd
Tensorflow 2 implementation of our high quality frame interpolation neural network
FILM: Frame Interpolation for Large Scene Motion Project | Paper | YouTube | Benchmark Scores Tensorflow 2 implementation of our high quality frame in
Generative Flow Networks for Discrete Probabilistic Modeling
Energy-based GFlowNets Code for Generative Flow Networks for Discrete Probabilistic Modeling by Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Vo
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes
Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec
Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search
Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search
Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it.
MFD-ILP Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it. The solvers are implemented using Pytho
E-RAFT: Dense Optical Flow from Event Cameras
E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi
Code for the CVPR2021 workshop paper "Noise Conditional Flow Model for Learning the Super-Resolution Space"
NCSR: Noise Conditional Flow Model for Learning the Super-Resolution Space Official NCSR training PyTorch Code for the CVPR2021 workshop paper "Noise
Flow-based visual scripting for Python
A simple visual node editor for Python Ryven combines flow-based visual scripting with Python. It gives you absolute freedom for your nodes and a simp
Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers
Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers This is an implementation of A Physics-Informed Vector Quantized Autoencoder for Dat
El Niño - Southern Oscillation analysis compared to minimum flow rates of rivers in northeast Brazil
ENSO (El Niño - Southern Oscillation) analysis in northeast Brazil É comprovada a influência dos fenômenos El Niño e La Niña nas secas no nordesde bra
Generate code from JSON schema files
json-schema-codegen Generate code from JSON schema files. Table of contents Introduction Currently supported languages Requirements Installation Usage
Tutorials and implementations for "Self-normalizing networks"
Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab
PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo
Reinforcement learning algorithms in RLlib
raylab Reinforcement learning algorithms in RLlib and PyTorch. Installation pip install raylab Quickstart Raylab provides agents and environments to b
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks
Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning
[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres
PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper
Flow Gaussian Mixture Model (FlowGMM) This repository contains a PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our pa
A NASA MEaSUREs project to provide automated, low latency, global glacier flow and elevation change datasets
Notebooks A NASA MEaSUREs project to provide automated, low latency, global glacier flow and elevation change datasets This repository provides tools
A short term landscape evolution using a path sampling method to solve water and sediment flow continuity equations and model mass flows over complex topographies.
r.sim.terrain A short-term landscape evolution model that simulates topographic change for both steady state and dynamic flow regimes across a range o
Traditional deepdream with VQGAN+CLIP and optical flow. Ready to use in Google Colab
VQGAN-CLIP-Video cat.mp4 policeman.mp4 schoolboy.mp4 forsenBOG.mp4
signac-flow - manage workflows with signac
signac-flow - manage workflows with signac The signac framework helps users manage and scale file-based workflows, facilitating data reuse, sharing, a
A Python concurrency scheduling library, compatible with asyncio and trio.
aiometer aiometer is a Python 3.6+ concurrency scheduling library compatible with asyncio and trio and inspired by Trimeter. It makes it easier to exe
🌎 The Modern Declarative Data Flow Framework for the AI Empowered Generation.
🌎 JSONClasses JSONClasses is a declarative data flow pipeline and data graph framework. Official Website: https://www.jsonclasses.com Official Docume
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.
VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt
This repository contains the code for the ICCV 2019 paper "Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics"
Occupancy Flow This repository contains the code for the project Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics. You can find detail
Flow is a computational framework for deep RL and control experiments for traffic microsimulation.
Flow Flow is a computational framework for deep RL and control experiments for traffic microsimulation. See our website for more information on the ap
A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.
A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.
PyTorch implementation of normalizing flow models
PyTorch implementation of normalizing flow models
A PowSyBl and Python integration based on GraalVM native image
PyPowSyBl The PyPowSyBl project gives access PowSyBl Java framework to Python developers. This Python integration relies on GraalVM to compile Java co
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)
Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o
A modular PyTorch library for optical flow estimation using neural networks
A modular PyTorch library for optical flow estimation using neural networks
The code release of paper Low-Light Image Enhancement with Normalizing Flow
[AAAI 2022] Low-Light Image Enhancement with Normalizing Flow Paper | Project Page Low-Light Image Enhancement with Normalizing Flow Yufei Wang, Renji
The best solution of the Weather Prediction track in the Yandex Shifts challenge
yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re
[AAAI2022] Source code for our paper《Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning》
SSVC The source code for paper [Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning] samples of the
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in
MLflow App Using React, Hooks, RabbitMQ, FastAPI Server, Celery, Microservices
Katana ML Skipper This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable
Python implementation of Spotify's authorization flow.
Spotify API Apps 🎷 🎶 🎼 This repository consists of many strange codes that make you think why the hell this guy doing this. Well... I got some reas
Official implementation of Densely connected normalizing flows
Densely connected normalizing flows This repository is the official implementation of NeurIPS 2021 paper Densely connected normalizing flows. Poster a
Annealed Flow Transport Monte Carlo
Annealed Flow Transport Monte Carlo Open source implementation accompanying ICML 2021 paper by Michael Arbel*, Alexander G. D. G. Matthews* and Arnaud
Inflated i3d network with inception backbone, weights transfered from tensorflow
I3D models transfered from Tensorflow to PyTorch This repo contains several scripts that allow to transfer the weights from the tensorflow implementat
A Pythonic framework for threat modeling
pytm: A Pythonic framework for threat modeling Introduction Traditional threat modeling too often comes late to the party, or sometimes not at all. In
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss This repository contains the TensorFlow implementation of the paper UnF
Denoising Normalizing Flow
Denoising Normalizing Flow Christian Horvat and Jean-Pascal Pfister 2021 We combine Normalizing Flows (NFs) and Denoising Auto Encoder (DAE) by introd
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".
A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".
Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer
GMFlow: Learning Optical Flow via Global Matching
GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the
Benchmarks for the Optimal Power Flow Problem
Power Grid Lib - Optimal Power Flow This benchmark library is curated and maintained by the IEEE PES Task Force on Benchmarks for Validation of Emergi
Universal Probability Distributions with Optimal Transport and Convex Optimization
Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing
Neural Scene Flow Fields using pytorch-lightning, with potential improvements
nsff_pl Neural Scene Flow Fields using pytorch-lightning. This repo reimplements the NSFF idea, but modifies several operations based on observation o
Traffic flow test platform, especially for reinforcement learning
Traffic Flow Test Platform Traffic flow test platform, especially for reinforcement learning, named TFTP. A traffic signal control framework that can
Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack
O365DevicePhish Microsoft365_devicePhish Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack This is a simple proof-of-concept script t
DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction
DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction This is the implementation of DeepSTD in
MMFlow is an open source optical flow toolbox based on PyTorch
Documentation: https://mmflow.readthedocs.io/ Introduction English | 简体中文 MMFlow is an open source optical flow toolbox based on PyTorch. It is a part
Identifies the faulty wafer before it can be used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells.
Identifies the faulty wafer before it can be used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells. The project retrains itself after every prediction, making it more robust and generalized over time.
Metrinome is an all-purpose tool for working with code complexity metrics.
Overview Metrinome is an all-purpose tool for working with code complexity metrics. It can be used as both a REPL and API, and includes: Converters to
Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows
Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows This is the official implementation of the ICCV 2021 Paper "Probabilistic Mono
Neural Scene Flow Prior (NeurIPS 2021 spotlight)
Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.
Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co
PyTorch implementation of UPFlow (unsupervised optical flow learning)
UPFlow: Upsampling Pyramid for Unsupervised Optical Flow Learning By Kunming Luo, Chuan Wang, Shuaicheng Liu, Haoqiang Fan, Jue Wang, Jian Sun Megvii
VHDL to Discrete Logic on PCB Flow
PCBFlow Highly experimental set of scripts to transform a digital circuit described in a hardware description language (VHDL or Verilog) into a discre
Normalizing Flows with a resampled base distribution
Resampling Base Distributions of Normalizing Flows Normalizing flows are a popular class of models for approximating probability distributions. Howeve
A project that uses optical flow and machine learning to detect aimhacking in video clips.
waldo-anticheat A project that aims to use optical flow and machine learning to visually detect cheating or hacking in video clips from fps games. Che
Python package with library and CLI tool for analyzing SeaFlow data
Seaflowpy A Python package for SeaFlow flow cytometer data. Table of Contents Install Read EVT/OPP/VCT Files Command-line Interface Configuration Inte
A project that uses optical flow and machine learning to detect aimhacking in video clips.
waldo-anticheat A project that aims to use optical flow and machine learning to visually detect cheating or hacking in video clips from fps games. Che
A project that uses optical flow and machine learning to detect aimhacking in video clips.
waldo-anticheat A project that aims to use optical flow and machine learning to visually detect cheating or hacking in video clips from fps games. Che
A new mini-batch framework for optimal transport in deep generative models, deep domain adaptation, approximate Bayesian computation, color transfer, and gradient flow.
BoMb-OT Python3 implementation of the papers On Transportation of Mini-batches: A Hierarchical Approach and Improving Mini-batch Optimal Transport via
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation
EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF
Diffusion Normalizing Flow (DiffFlow) Neurips2021
Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may
Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Prediction, ICCV-2021".
HF2-VAD Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Predictio
[ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing
NeRFlow [ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing Datasets The pouring dataset used for experiments can be download he
The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformers Improves Systematic Generalization".
Codebase for learning control flow in transformers The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformer
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation
EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF
AI Flow is an open source framework that bridges big data and artificial intelligence.
Flink AI Flow Introduction Flink AI Flow is an open source framework that bridges big data and artificial intelligence. It manages the entire machine
ETL flow framework based on Yaml configs in Python
ETL framework based on Yaml configs in Python A light framework for creating data streams. Setting up streams through configuration in the Yaml file.
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation
RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and
PyPSA: Python for Power System Analysis
1 Python for Power System Analysis Contents 1 Python for Power System Analysis 1.1 About 1.2 Documentation 1.3 Functionality 1.4 Example scripts as Ju
PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech
PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor
SinGlow: Generative Flow for SVS tasks in Tensorflow 2
SinGlow is a part of my Singing voice synthesis system. It can extract features of sound, particularly songs and musics. Then we can use these features (or perfect encoding) for feature migrating tasks. For example migrate features of real singers' song to those virtual singers' songs.
PortaSpeech - PyTorch Implementation
PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.
Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s
TensorFlow implementation of "Variational Inference with Normalizing Flows"
[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co
Demo code for ICCV 2021 paper "Sensor-Guided Optical Flow"
Sensor-Guided Optical Flow Demo code for "Sensor-Guided Optical Flow", ICCV 2021 This code is provided to replicate results with flow hints obtained f
A fast model to compute optical flow between two input images.
DCVNet: Dilated Cost Volumes for Fast Optical Flow This repository contains our implementation of the paper: @InProceedings{jiang2021dcvnet, title={
A Python library for Deep Probabilistic Modeling
Abstract DeeProb-kit is a Python library that implements deep probabilistic models such as various kinds of Sum-Product Networks, Normalizing Flows an
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch
pytorch-spynet This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper according
Know your customer pipeline in apache air flow
KYC_pipline Know your customer pipeline in apache air flow For a successful pipeline run take these steps: Run you Airflow server Admin - connection
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis
WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install
PyTorch implementations of normalizing flow and its variants.
PyTorch implementations of normalizing flow and its variants.
Pytorch implementation of FlowNet by Dosovitskiy et al.
FlowNetPytorch Pytorch implementation of FlowNet by Dosovitskiy et al. This repository is a torch implementation of FlowNet, by Alexey Dosovitskiy et
Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.
Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.
This python module is an easy-to-use port of the text normalization used in the paper "Not low-resource anymore: Aligner ensembling, batch filtering, and new datasets for Bengali-English machine translation". It is intended to be used for normalizing / cleaning Bengali and English text.
normalizer This python module is an easy-to-use port of the text normalization used in the paper "Not low-resource anymore: Aligner ensembling, batch
Deep Learning ❤️ OneFlow
Deep Learning with OneFlow made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. User Side Computer V