129 Repositories
Python off-policy Libraries
Set the draft security HTTP header Permissions-Policy (previously Feature-Policy) on your Django app.
django-permissions-policy Set the draft security HTTP header Permissions-Policy (previously Feature-Policy) on your Django app. Requirements Python 3.
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.
Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme
PyTorch implementation of Trust Region Policy Optimization
PyTorch implementation of TRPO Try my implementation of PPO (aka newer better variant of TRPO), unless you need to you TRPO for some specific reasons.
This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch
This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment to test the algorithm
This is the unofficial code of Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes. which achieve state-of-the-art trade-off between accuracy and speed on cityscapes and camvid, without using inference acceleration and extra data
Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes Introduction This is the unofficial code of Deep Dual-re
An forensics tool to help aid in the investigation of spoofed emails based off the email headers.
A forensic tool to make analysis of email headers easy to aid in the quick discovery of the attacker. Table of Contents About mailMeta Installation Us
Handwritten Text Recognition (HTR) system implemented with TensorFlow (TF) and trained on the IAM off-line HTR dataset. This Neural Network (NN) model recognizes the text contained in the images of segmented words.
Handwritten-Text-Recognition Handwritten Text Recognition (HTR) system implemented with TensorFlow (TF) and trained on the IAM off-line HTR dataset. T
Capture screen and download off Roku based devices
rokuview Capture screen and download off Roku based devices Tested on Hisense TV with Roku OS built-in No guarantee this will work with all Roku model
Cobalt Strike C2 Reverse proxy that fends off Blue Teams, AVs, EDRs, scanners through packet inspection and malleable profile correlation
Cobalt Strike C2 Reverse proxy that fends off Blue Teams, AVs, EDRs, scanners through packet inspection and malleable profile correlation
Paddle-RLBooks is a reinforcement learning code study guide based on pure PaddlePaddle.
Paddle-RLBooks Welcome to Paddle-RLBooks which is a reinforcement learning code study guide based on pure PaddlePaddle. 欢迎来到Paddle-RLBooks,该仓库主要是针对强化学
A collection of various RL algorithms like policy gradients, DQN and PPO. The goal of this repo will be to make it a go-to resource for learning about RL. How to visualize, debug and solve RL problems. I've additionally included playground.py for learning more about OpenAI gym, etc.
Reinforcement Learning (PyTorch) 🤖 + 🍰 = ❤️ This repo will contain PyTorch implementation of various fundamental RL algorithms. It's aimed at making
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms This repo contains the source code to reproduce the results in the paper A Close
Text Generation by Learning from Demonstrations
Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere
DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.
Differentiable Model Compression via Pseudo Quantization Noise DiffQ performs differentiable quantization using pseudo quantization noise. It can auto
Validate all your Customer IAM Policies against AWS Access Analyzer - Policy Validation
✅ Access Analyzer - Batch Policy Validator This script will analyze using AWS Access Analyzer - Policy Validation all your account customer managed IA
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm
Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This
Policy and data administration, distribution, and real-time updates on top of Open Policy Agent
⚡ OPAL ⚡ Open Policy Administration Layer OPAL is an administration layer for Open Policy Agent (OPA), detecting changes to both policy and policy dat
Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance
Models for natural language understanding (NLU) tasks often rely on the idiosyncratic biases of the dataset, which make them brittle against test cases outside the training distribution.
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).
This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1
A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading
A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.
Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc
Scalable, event-driven, deep-learning-friendly backtesting library
...Minimizing the mean square error on future experience. - Richard S. Sutton BTGym Scalable event-driven RL-friendly backtesting library. Build on
An introduction of Markov decision process (MDP) and two algorithms that solve MDPs (value iteration, policy iteration) along with their Python implementations.
Markov Decision Process A Markov decision process (MDP), by definition, is a sequential decision problem for a fully observable, stochastic environmen
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.
PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the
This is the source code of RPG (Reward-Randomized Policy Gradient)
RPG (Reward-Randomized Policy Gradient) Zhenggang Tang*, Chao Yu*, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang, Simon Shaolei Du, Yu Wang, Yi Wu (
Automatically compile an AWS Service Control Policy that ONLY allows AWS services that are compliant with your preferred compliance frameworks.
aws-allowlister Automatically compile an AWS Service Control Policy that ONLY allows AWS services that are compliant with your preferred compliance fr
DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos.
DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos A concise deep reinforcement learning libr
The Great Autoencoder Bake Off
The Great Autoencoder Bake Off The companion repository to a post on my blog. It contains all you need to reproduce the results. Features Currently fe
Modular Deep Reinforcement Learning framework in PyTorch. Companion library of the book "Foundations of Deep Reinforcement Learning".
SLM Lab Modular Deep Reinforcement Learning framework in PyTorch. Documentation: https://slm-lab.gitbook.io/slm-lab/ BeamRider Breakout KungFuMaster M