207 Repositories
Python constrained-policy-gradient Libraries
TigerLily: Finding drug interactions in silico with the Graph.
Drug Interaction Prediction with Tigerlily Documentation | Example Notebook | Youtube Video | Project Report Tigerlily is a TigerGraph based system de
A toolkit for Lagrangian-based constrained optimization in Pytorch
Cooper About Cooper is a toolkit for Lagrangian-based constrained optimization in Pytorch. This library aims to encourage and facilitate the study of
Machine learning beginner to Kaggle competitor in 30 days. Non-coders welcome. The program starts Monday, August 2, and lasts four weeks. It's designed for people who want to learn machine learning.
30-Days-of-ML-Kaggle 🔥 About the Hands On Program 💻 Machine learning beginner → Kaggle competitor in 30 days. Non-coders welcome The program starts
Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.
Deep Constrained Least Squares for Blind Image Super-Resolution [Paper] This is the official implementation of 'Deep Constrained Least Squares for Bli
GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery
GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery This is the code to the paper: Gradient-Based Learn
A working (ish) python script to convert text to a gradient.
verticle-horiontal-gradient-script A working (ish) python script to convert text to a gradient. This script is poorly made with the well known python
The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks
The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks This folder contains the code to reproduce the data in "The Implicit Bias o
OMLT: Optimization and Machine Learning Toolkit
OMLT is a Python package for representing machine learning models (neural networks and gradient-boosted trees) within the Pyomo optimization environment.
LightGBM + Optuna: no brainer
AutoLGBM LightGBM + Optuna: no brainer auto train lightgbm directly from CSV files auto tune lightgbm using optuna auto serve best lightgbm model usin
UMPNet: Universal Manipulation Policy Network for Articulated Objects
UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation
Implementation of linesearch Optimization Algorithms in Python
Nonlinear Optimization Algorithms During my time as Scientific Assistant at the Karlsruhe Institute of Technology (Germany) I implemented various Opti
PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning
ExORL: Exploratory Data for Offline Reinforcement Learning This is an original PyTorch implementation of the ExORL framework from Don't Change the Alg
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn
PolytopeSampler is a Matlab implementation of constrained Riemannian Hamiltonian Monte Carlo for sampling from high dimensional disributions on polytopes
PolytopeSampler PolytopeSampler is a Matlab implementation of constrained Riemannian Hamiltonian Monte Carlo for sampling from high dimensional disrib
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks Introduction This repo contains the pytorch impl
Structured Data Gradient Pruning (SDGP)
Structured Data Gradient Pruning (SDGP) Weight pruning is a technique to make Deep Neural Network (DNN) inference more computationally efficient by re
Code for Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks
Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks Under construction. Description Code for Phase diagram of S
Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc)
Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc). Structured a custom ensemble model and a neural network. Found a outperformed model for heart failure prediction accuracy of 88 percent.
Constrained Language Models Yield Few-Shot Semantic Parsers
Constrained Language Models Yield Few-Shot Semantic Parsers This repository contains tools and instructions for reproducing the experiments in the pap
Lipschitz-constrained Unsupervised Skill Discovery
Lipschitz-constrained Unsupervised Skill Discovery This repository is the official implementation of Seohong Park, Jongwook Choi*, Jaekyeom Kim*, Hong
hgboost - Hyperoptimized Gradient Boosting
hgboost is short for Hyperoptimized Gradient Boosting and is a python package for hyperparameter optimization for xgboost, catboost and lightboost using cross-validation, and evaluating the results on an independent validation set. hgboost can be applied for classification and regression tasks.
Fibonacci Method Gradient Descent
An implementation of the Fibonacci method for gradient descent, featuring a TKinter GUI for inputting the function / parameters to be examined and a matplotlib plot of the function and results.
Contrastive Loss Gradient Attack (CLGA)
Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu
Bag of Tricks for Natural Policy Gradient Reinforcement Learning
Bag of Tricks for Natural Policy Gradient Reinforcement Learning [ArXiv] Setup Python 3.8.0 pip install -r req.txt Mujoco 200 license Main Files main.
Instantaneous Motion Generation for Robots and Machines.
Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan
Gradient - A Python program designed to create a reactive and ambient music listening experience
Gradient is a Python program designed to create a reactive and ambient music listening experience.
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm
Optimizing synthesizer parameters using gradient approximation
Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura
Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechanism
Period-alternatives-of-Softmax Experimental Demo for our paper 'Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechani
Learning Off-Policy with Online Planning, CoRL 2021
LOOP: Learning Off-Policy with Online Planning Accepted in Conference of Robot Learning (CoRL) 2021. Harshit Sikchi, Wenxuan Zhou, David Held Paper In
Implementation for ACProp ( Momentum centering and asynchronous update for adaptive gradient methdos, NeurIPS 2021)
This repository contains code to reproduce results for submission NeurIPS 2021, "Momentum Centering and Asynchronous Update for Adaptive Gradient Meth
Policy Gradient Algorithms (One Step Actor Critic & PPO) from scratch using Numpy
Policy Gradient Algorithms From Scratch (NumPy) This repository showcases two policy gradient algorithms (One Step Actor Critic and Proximal Policy Op
Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients
LSF-SAC Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy G
Plotting points that lie on the intersection of the given curves using gradient descent.
Plotting intersection of curves using gradient descent Webapp Link --- What's the app about Why this app Plotting functions and their intersection. A
Python implementation of the Learning Time-Series Shapelets method, that learns a shapelet-based time-series classifier with gradient descent.
shaplets Python implementation of the Learning Time-Series Shapelets method by Josif Grabocka et al., that learns a shapelet-based time-series classif
Self sustained producer-consumer(prosumer) policy study using Python and Gurobi
Prosumer Policy This project aims to model the optimum dispatch behaviour of households with PV and battery systems under different policy instrument
Implementation of Deep Deterministic Policy Gradiet Algorithm in Tensorflow
ddpg-aigym Deep Deterministic Policy Gradient Implementation of Deep Deterministic Policy Gradiet Algorithm (Lillicrap et al.arXiv:1509.02971.) in Ten
Tianshou - An elegant PyTorch deep reinforcement learning library.
Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on
Checkov is a static code analysis tool for infrastructure-as-code.
Checkov - Prevent cloud misconfigurations during build-time for Terraform, Cloudformation, Kubernetes, Serverless framework and other infrastructure-as-code-languages with Checkov by Bridgecrew.
House_prices_kaggle - Predict sales prices and practice feature engineering, RFs, and gradient boosting
House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin
BRNet - code for Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss function
BRNet code for "Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss func
Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients
Constrained Logistic Regression Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (v
Houseprices - Predict sales prices and practice feature engineering, RFs, and gradient boosting
House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization
MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best
Code of TIP2021 Paper《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet and Pytorch versions.
SFace Code of TIP2021 Paper 《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet, PyTorch and Jittor versi
Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM)
Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM) Introduction The average lifetime of the $D^{0}$ me
[TPDS'21] COSCO: Container Orchestration using Co-Simulation and Gradient Based Optimization for Fog Computing Environments
COSCO Framework COSCO is an AI based coupled-simulation and container orchestration framework for integrated Edge, Fog and Cloud Computing Environment
Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework"
Privacy-Aware Inverse RL (PRIL) Analysis Framework Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based
Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning"
CMSF Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning" Requirements Python = 3.7.6 PyTorch
Security Monkey monitors AWS, GCP, OpenStack, and GitHub orgs for assets and their changes over time.
NOTE: Security Monkey is in maintenance mode and will be end-of-life in 2020. For AWS users, please make use of AWS Config. For GCP users, please make
CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks
CALVIN CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks Oier Mees, Lukas Hermann, Erick Rosete,
Active Offline Policy Selection With Python
Active Offline Policy Selection This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian
Enhancing Twin Delayed Deep Deterministic Policy Gradient with Cross-Entropy Method
Enhancing Twin Delayed Deep Deterministic Policy Gradient with Cross-Entropy Method Hieu Trung Nguyen, Khang Tran and Ngoc Hoang Luong Setup Clone thi
Code repository for "Reducing Underflow in Mixed Precision Training by Gradient Scaling" presented at IJCAI '20
Reducing Underflow in Mixed Precision Training by Gradient Scaling This project implements the gradient scaling method to improve the performance of m
Forecasting with Gradient Boosted Time Series Decomposition
ThymeBoost ThymeBoost combines time series decomposition with gradient boosting to provide a flexible mix-and-match time series framework for spicy fo
PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning
PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning
Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation
Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation This is the implementation of the approach describ
PyTorch implementation of Off-policy Learning in Two-stage Recommender Systems
Off-Policy-2-Stage This repo provides a PyTorch implementation of the MovieLens experiments for the following paper: Off-policy Learning in Two-stage
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.
EMNLP 2021 paper "Pre-train or Annotate? Domain Adaptation with a Constrained Budget".
Pre-train or Annotate? Domain Adaptation with a Constrained Budget This repo contains code and data associated with EMNLP 2021 paper "Pre-train or Ann
Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).
Robust On-Policy Data Collection for Data-Efficient Policy Evaluation Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evalua
Official repository for: Continuous Control With Ensemble DeepDeterministic Policy Gradients
Continuous Control With Ensemble Deep Deterministic Policy Gradients This repository is the official implementation of Continuous Control With Ensembl
Public Code for NIPS submission SimiGrad: Fine-Grained Adaptive Batching for Large ScaleTraining using Gradient Similarity Measurement
Public code for NIPS submission "SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity Measurement" This repo co
Official implementation of the NeurIPS 2021 paper Online Learning Of Neural Computations From Sparse Temporal Feedback
Online Learning Of Neural Computations From Sparse Temporal Feedback This repository is the official implementation of the NeurIPS 2021 paper Online L
A semismooth Newton method for elliptic PDE-constrained optimization
sNewton4PDEOpt The Python module implements a semismooth Newton method for solving finite-element discretizations of the strongly convex, linear ellip
Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning
advantage-weighted-regression Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning, by Peng et al. (
LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.
LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.
Training code and evaluation benchmarks for the "Self-Supervised Policy Adaptation during Deployment" paper.
Self-Supervised Policy Adaptation during Deployment PyTorch implementation of PAD and evaluation benchmarks from Self-Supervised Policy Adaptation dur
A Python package for causal inference using Synthetic Controls
Synthetic Control Methods A Python package for causal inference using synthetic controls This Python package implements a class of approaches to estim
InfiniteBoost: building infinite ensembles with gradient descent
InfiniteBoost Code for a paper InfiniteBoost: building infinite ensembles with gradient descent (arXiv:1706.01109). A. Rogozhnikov, T. Likhomanenko De
Multiple implementations for abstractive text summurization , using google colab
Text Summarization models if you are able to endorse me on Arxiv, i would be more than glad https://arxiv.org/auth/endorse?x=FRBB89 thanks This repo i
Implementation of Sequence Generative Adversarial Nets with Policy Gradient
SeqGAN Requirements: Tensorflow r1.0.1 Python 2.7 CUDA 7.5+ (For GPU) Introduction Apply Generative Adversarial Nets to generating sequences of discre
Stochastic gradient descent with model building
Stochastic Model Building (SMB) This repository includes a new fast and robust stochastic optimization algorithm for training deep learning models. Th
Responsible Machine Learning with Python
Examples of techniques for training interpretable ML models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.
Fit interpretable models. Explain blackbox machine learning.
InterpretML - Alpha Release In the beginning machines learned in darkness, and data scientists struggled in the void to explain them. Let there be lig
Nevergrad - A gradient-free optimization platform
Nevergrad - A gradient-free optimization platform nevergrad is a Python 3.6+ library. It can be installed with: pip install nevergrad More installati
MagTape is a Policy-as-Code tool for Kubernetes that allows for evaluating Kubernetes resources against a set of defined policies to inform and enforce best practice configurations.
MagTape is a Policy-as-Code tool for Kubernetes that allows for evaluating Kubernetes resources against a set of defined policies to inform and enforce best practice configurations. MagTape includes variable policy enforcement, notifications, and targeted metrics.
Multi-objective constrained optimization for energy applications via tree ensembles
Multi-objective constrained optimization for energy applications via tree ensembles
Gym environments used in the paper: "Developmental Reinforcement Learning of Control Policy of a Quadcopter UAV with Thrust Vectoring Rotors"
gym_multirotor Gym to train reinforcement learning agents on UAV platforms Quadrotor Tiltrotor Requirements This package has been tested on Ubuntu 18.
Safe Policy Optimization with Local Features
Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi
6D Grasping Policy for Point Clouds
GA-DDPG [website, paper] Installation git clone https://github.com/liruiw/GA-DDPG.git --recursive Setup: Ubuntu 16.04 or above, CUDA 10.0 or above, py
Safe Policy Optimization with Local Features
Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)
Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can
PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch.
snn-localization repo PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch. Install Dependencies Orig
Trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI
Introduction This script trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI. In order to run this
This tool allows to automatically test for Content Security Policy bypass payloads.
CSPass This tool allows to automatically test for Content Security Policy bypass payloads. Usage [cspass]$ ./cspass.py -h usage: cspass.py [-h] [--no-
Official implementation of Generalized Data Weighting via Class-level Gradient Manipulation (NeurIPS 2021).
Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas
Generalized Proximal Policy Optimization with Sample Reuse (GePPO)
Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene
Generalized Data Weighting via Class-level Gradient Manipulation
Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas
Generalized and Efficient Blackbox Optimization System.
OpenBox Doc | OpenBox中文文档 OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio
Locally Constrained Self-Attentive Sequential Recommendation
LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L
The command line interface for Gradient - Gradient is an an end-to-end MLOps platform
Gradient CLI Get started: Create Account • Install CLI • Tutorials • Docs Resources: Website • Blog • Support • Contact Sales Gradient is an an end-to
[NeurIPS 2021] Official implementation of paper "Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization".
Code for Coordinated Policy Optimization Webpage | Code | Paper | Talk (English) | Talk (Chinese) Hi there! This is the source code of the paper “Lear
Gradient representations in ReLU networks as similarity functions
Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator This is the official code repository for NeurIPS 2021 paper: CARMS: Categorica
Learning where to learn - Gradient sparsity in meta and continual learning
Learning where to learn - Gradient sparsity in meta and continual learning In this paper, we investigate gradient sparsity found by MAML in various co
Gradient Inversion with Generative Image Prior
Gradient Inversion with Generative Image Prior This repository is an implementation of "Gradient Inversion with Generative Image Prior", accepted to N
Iterative stochastic gradient descent (SGD) linear regressor with regularization
SGD-Linear-Regressor Iterative stochastic gradient descent (SGD) linear regressor with regularization Dataset: Kaggle “Graduate Admission 2” https://w
An implementation of the proximal policy optimization algorithm
PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).