3818 Repositories
Python pytorch-models Libraries
PyTorch reimplementation of REALM and ORQA
PyTorch reimplementation of REALM and ORQA
The Hitchiker's Guide to PyTorch
The Hitchiker's Guide to PyTorch
Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models
Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models. You can easily generate all kind of art from drawing, painting, sketch, or even a specific artist style just using a text input. You can also specify the dimensions of the image. The process can take 3-20 mins and the results will be emailed to you.
GNNLens2 is an interactive visualization tool for graph neural networks (GNN).
GNNLens2 is an interactive visualization tool for graph neural networks (GNN).
TyXe: Pyro-based BNNs for Pytorch users
TyXe: Pyro-based BNNs for Pytorch users TyXe aims to simplify the process of turning Pytorch neural networks into Bayesian neural networks by leveragi
DeepCAD: A Deep Generative Network for Computer-Aided Design Models
DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,
EdiTTS: Score-based Editing for Controllable Text-to-Speech
Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech
PortaSpeech - PyTorch Implementation
PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor
PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer
SimTrans-Weak-Shot-Classification This repository contains the official PyTorch implementation of the following paper: Weak-shot Fine-grained Classifi
Unofficial PyTorch implementation of DeepMind's Perceiver IO with PyTorch Lightning scripts for distributed training
Unofficial PyTorch implementation of DeepMind's Perceiver IO with PyTorch Lightning scripts for distributed training
PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.
An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"
Refactored version of FastSpeech2
Refactored version of FastSpeech2. An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"
This is the official pytorch implementation of Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation(TESKD)
Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation (TESKD) By Zheng Li[1,4], Xiang Li[2], Lingfeng Yang[2,4], Jian Yang[2], Zh
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.
Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)
Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].
Training vision models with full-batch gradient descent and regularization
Stochastic Training is Not Necessary for Generalization -- Training competitive vision models without stochasticity This repository implements trainin
Blender addon to generate better building models from satellite imagery.
Blender addon to generate better building models from satellite imagery.
A PyTorch re-implementation of Neural Radiance Fields
nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall
PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021.
IBRNet: Learning Multi-View Image-Based Rendering PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021. IBRN
The first public PyTorch implementation of Attentive Recurrent Comparators
arc-pytorch PyTorch implementation of Attentive Recurrent Comparators by Shyam et al. A blog explaining Attentive Recurrent Comparators Visualizing At
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"
RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"
LSTM and QRNN Language Model Toolkit for PyTorch
LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu
Training RNNs as Fast as CNNs
News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.
Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,
A PyTorch Library for Accelerating 3D Deep Learning Research
Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research Overview NVIDIA Kaolin library provides a PyTorch API for working with a variety
TorchXRayVision: A library of chest X-ray datasets and models.
torchxrayvision A library for chest X-ray datasets and models. Including pre-trained models. ( 🎬 promo video about the project) Motivation: While the
A pytorch-based deep learning framework for multi-modal 2D/3D medical image segmentation
A 3D multi-modal medical image segmentation library in PyTorch We strongly believe in open and reproducible deep learning research. Our goal is to imp
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.
NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are
Bald-to-Hairy Translation Using CycleGAN
GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa
Explainer for black box models that predict molecule properties
Explaining why that molecule exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help us
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax
[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou
Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks
Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modifies the input text with a textual template and directly uses PLMs to conduct pre-trained tasks. This library provides a standard, flexible and extensible framework to deploy the prompt-learning pipeline. OpenPrompt supports loading PLMs directly from huggingface transformers. In the future, we will also support PLMs implemented by other libraries.
deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.
deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.
PyTorch Implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding (ORAL, MICCAIW 2021)
Small Lesion Segmentation in Brain MRIs with Subpixel Embedding PyTorch implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedd
Google and Stanford University released a new pre-trained model called ELECTRA
Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants.
Transfer-Learn is an open-source and well-documented library for Transfer Learning.
Transfer-Learn is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consistent with torchvision. You can easily develop new algorithms, or readily apply existing algorithms.
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.
pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki
A code copied from google-research which named motion-imitation was rewrited with PyTorch
motor-system Introduction A code copied from google-research which named motion-imitation was rewrited with PyTorch. More details can get from this pr
Pytorch implementation of VAEs for heterogeneous likelihoods.
Heterogeneous VAEs Beware: This repository is under construction 🛠️ Pytorch implementation of different VAE models to model heterogeneous data. Here,
A Chinese to English Neural Model Translation Project
ZH-EN NMT Chinese to English Neural Machine Translation This project is inspired by Stanford's CS224N NMT Project Dataset used in this project: News C
Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.
Deep-Unsupervised-Domain-Adaptation Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E.
Dense matching library based on PyTorch
Dense Matching A general dense matching library based on PyTorch. For any questions, issues or recommendations, please contact Prune at prune.truong@v
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥
Pytorch implementation of the unsupervised object discovery method LOST.
LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.
Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)
Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)
CLIPort: What and Where Pathways for Robotic Manipulation
CLIPort CLIPort: What and Where Pathways for Robotic Manipulation Mohit Shridhar, Lucas Manuelli, Dieter Fox CoRL 2021 CLIPort is an end-to-end imitat
Exploring Relational Context for Multi-Task Dense Prediction [ICCV 2021]
Adaptive Task-Relational Context (ATRC) This repository provides source code for the ICCV 2021 paper Exploring Relational Context for Multi-Task Dense
Pytorch implementation of CVPR2020 paper “VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation”
VectorNet Re-implementation This is the unofficial pytorch implementation of CVPR2020 paper "VectorNet: Encoding HD Maps and Agent Dynamics from Vecto
Tutel MoE: An Optimized Mixture-of-Experts Implementation
Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho
Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)
Table of Content Introduction Getting Started Datasets Installation Experiments Training & Testing Pretrained models Texture fine-tuning Demo Toward R
Reinforcement learning framework and algorithms implemented in PyTorch.
Reinforcement learning framework and algorithms implemented in PyTorch.
Model factory is a ML training platform to help engineers to build ML models at scale
Model Factory Machine learning today is powering many businesses today, e.g., search engine, e-commerce, news or feed recommendation. Training high qu
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"
Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their
A PyTorch implementation of SlowFast based on ICCV 2019 paper "SlowFast Networks for Video Recognition"
SlowFast A PyTorch implementation of SlowFast based on ICCV 2019 paper SlowFast Networks for Video Recognition. Requirements Anaconda PyTorch conda in
A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.
A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.
A lightweight wrapper for PyTorch that provides a simple declarative API for context switching between devices, distributed modes, mixed-precision, and PyTorch extensions.
A lightweight wrapper for PyTorch that provides a simple declarative API for context switching between devices, distributed modes, mixed-precision, and PyTorch extensions.
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models tabular data.
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System
Deep Face Recognition in PyTorch
Face Recognition in PyTorch By Alexey Gruzdev and Vladislav Sovrasov Introduction A repository for different experimental Face Recognition models such
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch
pytorch-spynet This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper according
GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV'18 Oral) [PyTorch]
GANimation: Anatomically-aware Facial Animation from a Single Image [Project] [Paper] Official implementation of GANimation. In this work we introduce
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥
face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa
Differentiable architecture search for convolutional and recurrent networks
Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX
A PyTorch implementation of EfficientNet and EfficientNetV2 (coming soon!)
EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models
Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th
A (PyTorch) imbalanced dataset sampler for oversampling low frequent classes and undersampling high frequent ones.
Imbalanced Dataset Sampler Introduction In many machine learning applications, we often come across datasets where some types of data may be seen more
Pytorch implementation for "Large-Scale Long-Tailed Recognition in an Open World" (CVPR 2019 ORAL)
Large-Scale Long-Tailed Recognition in an Open World [Project] [Paper] [Blog] Overview Open Long-Tailed Recognition (OLTR) is the author's re-implemen
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)
Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3
PyTorch code to run synthetic experiments.
Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}
An inofficial PyTorch implementation of PREDATOR based on KPConv.
PREDATOR: Registration of 3D Point Clouds with Low Overlap An inofficial PyTorch implementation of PREDATOR based on KPConv. The code has been tested
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."
Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019
PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py
A repository that shares tuning results of trained models generated by TensorFlow / Keras. Post-training quantization (Weight Quantization, Integer Quantization, Full Integer Quantization, Float16 Quantization), Quantization-aware training. TensorFlow Lite. OpenVINO. CoreML. TensorFlow.js. TF-TRT. MediaPipe. ONNX. [.tflite,.h5,.pb,saved_model,tfjs,tftrt,mlmodel,.xml/.bin, .onnx]
PINTO_model_zoo Please read the contents of the LICENSE file located directly under each folder before using the model. My model conversion scripts ar
This repo is official PyTorch implementation of MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices(CVPRW 2021).
Github Code of "MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices" Introduction This repo is official PyTorch implementatio
Torch Containers simplified in PyTorch
pytorch-containers This repository aims to help former Torchies more seamlessly transition to the "Containerless" world of PyTorch by providing a list
simple generative adversarial network (GAN) using PyTorch
Generative Adversarial Networks (GANs) in PyTorch Running Run the sample code by typing: ./gan_pytorch.py ...and you'll train two nets to battle it o
ConvNet training using pytorch
Convolutional networks using PyTorch This is a complete training example for Deep Convolutional Networks on various datasets (ImageNet, Cifar10, Cifar
Example of network fine-tuning in pytorch for the kaggle competition Dogs vs. Cats Redux: Kernels Edition
Example of network fine-tuning in pytorch for the kaggle competition Dogs vs. Cats Redux: Kernels Edition Currently
Some example scripts on pytorch
pytorch-practice Some example scripts on pytorch CONLL 2000 Chunking task Uses BiLSTM CRF loss with char CNN embeddings. To run use: cd data/conll2000
A scalable template for PyTorch projects, with examples in Image Segmentation, Object classification, GANs and Reinforcement Learning.
PyTorch Project Template is being sponsored by the following tool; please help to support us by taking a look and signing up to a free trial PyTorch P
PyTorch tutorials and best practices.
Effective PyTorch Table of Contents Part I: PyTorch Fundamentals PyTorch basics Encapsulate your model with Modules Broadcasting the good and the ugly
Pytorch implementations of various Deep NLP models in cs-224n(Stanford Univ)
DeepNLP-models-Pytorch Pytorch implementations of various Deep NLP models in cs-224n(Stanford Univ: NLP with Deep Learning) This is not for Pytorch be
Simple PyTorch Tutorials Zero to ALL!
PyTorchZeroToAll Quick 3~4 day lecture materials for HKUST students. Video Lectures: (RNN TBA) Youtube Bilibili Slides Lecture Slides @GoogleDrive If
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)
pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm
PyTorch Tutorial for Deep Learning Researchers
This repository provides tutorial code for deep learning researchers to learn PyTorch. In the tutorial, most of the models were implemented with less
An IPython Notebook tutorial on deep learning for natural language processing, including structure prediction.
Table of Contents: Introduction to Torch's Tensor Library Computation Graphs and Automatic Differentiation Deep Learning Building Blocks: Affine maps,
Minimal tutorials for PyTorch
Minimal tutorials for PyTorch adapted from Alec Radford's Theano tutorials. Tensor multiplication Linear Regression Logistic Regression Neural Network
Simple examples to introduce PyTorch
This repository introduces the fundamental concepts of PyTorch through self-contained examples. At its core, PyTorch provides two main features: An n-
C++ Implementation of PyTorch Tutorials for Everyone
C++ Implementation of PyTorch Tutorials for Everyone OS (Compiler)\LibTorch 1.9.0 macOS (clang 10.0, 11.0, 12.0) Linux (gcc 8, 9, 10, 11) Windows (msv
A collection of various deep learning architectures, models, and tips
Deep Learning Models A collection of various deep learning architectures, models, and tips for TensorFlow and PyTorch in Jupyter Notebooks. Traditiona
Open source guides/codes for mastering deep learning to deploying deep learning in production in PyTorch, Python, C++ and more.
Deep Learning Materials by Deep Learning Wizard Start Learning Now Please head to www.deeplearningwizard.com to start learning! It is mobile/tablet fr
Deep Learning (with PyTorch)
Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for
Interactive deep learning book with multi-framework code, math, and discussions. Adopted at 200 universities.
D2L.ai: Interactive Deep Learning Book with Multi-Framework Code, Math, and Discussions Book website | STAT 157 Course at UC Berkeley | Latest version
A set of examples around pytorch in Vision, Text, Reinforcement Learning, etc.
PyTorch Examples WARNING: if you fork this repo, github actions will run daily on it. To disable this, go to /examples/settings/actions and Disable Ac
PyTorch tutorials.
PyTorch Tutorials All the tutorials are now presented as sphinx style documentation at: https://pytorch.org/tutorials Contributing We use sphinx-galle
pytorch implementation of "Distilling a Neural Network Into a Soft Decision Tree"
Soft-Decision-Tree Soft-Decision-Tree is the pytorch implementation of Distilling a Neural Network Into a Soft Decision Tree, paper recently published
Visualizer for neural network, deep learning, and machine learning models
Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX, TensorFlow Lite, Keras, Caffe, Darknet, ncnn,
Using / reproducing ACD from the paper "Hierarchical interpretations for neural network predictions" 🧠 (ICLR 2019)
Hierarchical neural-net interpretations (ACD) 🧠 Produces hierarchical interpretations for a single prediction made by a pytorch neural network. Offic