244 Repositories
Python resolution Libraries
A high-performance DNS stub resolver for bulk lookups and reconnaissance (subdomain enumeration)
MassDNS A high-performance DNS stub resolver MassDNS is a simple high-performance DNS stub resolver targeting those who seek to resolve a massive amou
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w
The project covers common metrics for super-resolution performance evaluation.
Super-Resolution Performance Evaluation Code The project covers common metrics for super-resolution performance evaluation. Metrics support The script
PaddlePaddle GAN library, including lots of interesting applications like First-Order motion transfer, wav2lip, picture repair, image editing, photo2cartoon, image style transfer, and so on.
English | 简体中文 PaddleGAN PaddleGAN provides developers with high-performance implementation of classic and SOTA Generative Adversarial Networks, and s
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"
Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos Implementation for "3D Human Pose, Shape and Texture from Low-Resoluti
Official implementation of the paper 'High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network' in CVPR 2021
LPTN Paper | Supplementary Material | Poster High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network Ji
Taming Transformers for High-Resolution Image Synthesis
Taming Transformers for High-Resolution Image Synthesis CVPR 2021 (Oral) Taming Transformers for High-Resolution Image Synthesis Patrick Esser*, Robin
Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective
Unofficial pytorch implementation of the paper "Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective"
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising
Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M
cLoops2: full stack analysis tool for chromatin interactions
cLoops2: full stack analysis tool for chromatin interactions Introduction cLoops2 is an extension of our previous work, cLoops. From loop-calling base
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).
RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc
Real-Time High-Resolution Background Matting
Real-Time High-Resolution Background Matting Official repository for the paper Real-Time High-Resolution Background Matting. Our model requires captur
[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning
NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning Project Page | Paper | Supplemental material #1 | Supplement
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"
DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p
Framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample resolution
Sample-specific Bayesian Networks A framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample or per-patient re
PyTorch implementation of a Real-ESRGAN model trained on custom dataset
Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train
🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥
🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥
Open source single image super-resolution toolbox containing various functionality for training a diverse number of state-of-the-art super-resolution models. Also acts as the companion code for the IEEE signal processing letters paper titled 'Improving Super-Resolution Performance using Meta-Attention Layers’.
Deep-FIR Codebase - Super Resolution Meta Attention Networks About This repository contains the main coding framework accompanying our work on meta-at
[peer review] An Arbitrary Scale Super-Resolution Approach for 3D MR Images using Implicit Neural Representation
ArSSR This repository is the pytorch implementation of our manuscript "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonan
Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)"
CRAN Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)" This code doesn't exa
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train
NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.
NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].
OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].
OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation
EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution (ICCV, 2021) (PyTorch) - We released the training code!
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte Computer Vision Lab
[ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution
ArbSR Pytorch implementation of "Learning A Single Network for Scale-Arbitrary Super-Resolution", ICCV 2021 [Project] [arXiv] Highlights A plug-in mod
Omniscient Video Super-Resolution
Omniscient Video Super-Resolution This is the official code of OVSR (Omniscient Video Super-Resolution, ICCV 2021). This work is based on PFNL. Datase
A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation
A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation
4K videos with annotated masks in our ICCV2021 paper 'Internal Video Inpainting by Implicit Long-range Propagation'.
Annotated 4K Videos paper | project website | code | demo video 4K videos with annotated object masks in our ICCV2021 paper: Internal Video Inpainting
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation
EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"
Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a
Pytorch code for our paper "Feedback Network for Image Super-Resolution" (CVPR2019)
Feedback Network for Image Super-Resolution [arXiv] [CVF] [Poster] Update: Our proposed Gated Multiple Feedback Network (GMFN) will appear in BMVC2019
Image Super-Resolution by Neural Texture Transfer
SRNTT: Image Super-Resolution by Neural Texture Transfer Tensorflow implementation of the paper Image Super-Resolution by Neural Texture Transfer acce
PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)
Gated Multiple Feedback Network for Image Super-Resolution This repository contains the PyTorch implementation for the proposed GMFN [arXiv]. The fram
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)
About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)
IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset
Second-order Attention Network for Single Image Super-resolution (CVPR-2019)
Second-order Attention Network for Single Image Super-resolution (CVPR-2019) "Second-order Attention Network for Single Image Super-resolution" is pub
Torch code for our CVPR 2018 paper "Residual Dense Network for Image Super-Resolution" (Spotlight)
Residual Dense Network for Image Super-Resolution This repository is for RDN introduced in the following paper Yulun Zhang, Yapeng Tian, Yu Kong, Bine
ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.
ESRGAN (Enhanced SRGAN) [ 🚀 BasicSR] [Real-ESRGAN] ✨ New Updates. We have extended ESRGAN to Real-ESRGAN, which is a more practical algorithm for rea
A cross-document event and entity coreference resolution system, trained and evaluated on the ECB+ corpus.
A Comprehensive Comparison of Word Embeddings in Event & Entity Coreference Resolution. Introduction This repo contains experimental code derived from
A tool for making simple-style text posters or wallpapers with high resolution.
PurePoster PurePoster is a fancy tool for making arbitrary-resolution, simple-style posters or wallpapers with text in center. Functionality PurePoste
Fast batch image resizer and rotator for JPEG and PNG images.
imgp is a command line image resizer and rotator for JPEG and PNG images.
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).
VSR-Transformer By Jiezhang Cao, Yawei Li, Kai Zhang, Luc Van Gool This paper proposes a new Transformer for video super-resolution (called VSR-Transf
Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR
Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR
【Arxiv】Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution
SANet Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 to
Official implementation of Deep Burst Super-Resolution
Deep-Burst-SR Official implementation of Deep Burst Super-Resolution Publication: Deep Burst Super-Resolution. Goutam Bhat, Martin Danelljan, Luc Van
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"
LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data
Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"
Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules
DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond
BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie
Lite-HRNet: A Lightweight High-Resolution Network
LiteHRNet Benchmark 🔥 🔥 Based on MMsegmentation 🔥 🔥 Cityscapes FCN resize concat config mIoU last mAcc last eval last mIoU best mAcc best eval bes
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"
Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules
DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr
Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments
Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW
Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices, ACM Multimedia 2021
Codes for ECBSR Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices Xindong Zhang, Hui Zeng, Lei Zhang ACM Multimedia 202
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)
Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc
Unoffical implementation about Image Super-Resolution via Iterative Refinement by Pytorch
Image Super-Resolution via Iterative Refinement Paper | Project Brief This is a unoffical implementation about Image Super-Resolution via Iterative Re
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation
UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)
Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P
The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution.
WSRGlow The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution. Audio sa
SwinIR: Image Restoration Using Swin Transformer
SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)
Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802
PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)
About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"
This is an official implementation of the High-Resolution Transformer for Dense Prediction.
High-Resolution Transformer for Dense Prediction Introduction This is the official implementation of High-Resolution Transformer (HRT). We present a H
DAN: Unfolding the Alternating Optimization for Blind Super Resolution
DAN-Basd-on-Openmmlab DAN: Unfolding the Alternating Optimization for Blind Super Resolution We reproduce DAN via mmediting based on open-sourced code
Practical Single-Image Super-Resolution Using Look-Up Table
Practical Single-Image Super-Resolution Using Look-Up Table [Paper] Dependency Python 3.6 PyTorch glob numpy pillow tqdm tensorboardx 1. Training deep
Official PyTorch implementation of "VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization" (CVPR 2021)
VITON-HD — Official PyTorch Implementation VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization Seunghwan Choi*1, Sunghyun Pa
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution
Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation
UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch
Collect super-resolution related papers, data, repositories
Collect super-resolution related papers, data, repositories
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning
Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup
Photographic Image Synthesis with Cascaded Refinement Networks - Pytorch Implementation
Photographic Image Synthesis with Cascaded Refinement Networks-Pytorch (https://arxiv.org/abs/1707.09405) This is a Pytorch implementation of cascaded
Pytorch implementation of Deep Recursive Residual Network for Super Resolution (DRRN)
DRRN-pytorch This is an unofficial implementation of "Deep Recursive Residual Network for Super Resolution (DRRN)", CVPR 2017 in Pytorch. [Paper] You
Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch
SRDenseNet-pytorch Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch (http://openaccess.thecvf.com/content_ICC
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.
Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica
Code for Text Prior Guided Scene Text Image Super-Resolution
Code for Text Prior Guided Scene Text Image Super-Resolution
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation
Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p
Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.
vid2vid Project | YouTube(short) | YouTube(full) | arXiv | Paper(full) Pytorch implementation for high-resolution (e.g., 2048x1024) photorealistic vid
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)
EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou
PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"
HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the
Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference
RawVSR This repo contains the official codes for our paper: Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference Xiaoh
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).
Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-
PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)
This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the official implementation ESPCN and TecoGAN for more information.
This is the unofficial code of Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes. which achieve state-of-the-art trade-off between accuracy and speed on cityscapes and camvid, without using inference acceleration and extra data
Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes Introduction This is the unofficial code of Deep Dual-re
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted
NU-Wave — Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution
TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to
PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021.
GCResNet PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021. The code will
Learning To Have An Ear For Face Super-Resolution
Learning To Have An Ear For Face Super-Resolution [Project Page] This repository contains demo code of our CVPR2020 paper. Training and evaluation on
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation
UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c