57 Repositories
Python sequential Libraries
Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.
Session-aware BERT4Rec Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 shor
smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectious disease models: the COVID-19 case by Storvik et al
smc.covid smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectiou
EasyRequests is a minimalistic HTTP-Request Library that wraps aiohttp and asyncio in a small package that allows for sequential, parallel or even single requests
EasyRequests EasyRequests is a minimalistic HTTP-Request Library that wraps aiohttp and asyncio in a small package that allows for sequential, paralle
DTCN IJCAI - Sequential prediction learning framework and algorithm
DTCN This is the implementation of our paper "Sequential Prediction of Social Me
DTCN SMP Challenge - Sequential prediction learning framework and algorithm
DTCN This is the implementation of our paper "Sequential Prediction of Social Me
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code
sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ
Can We Find Neurons that Cause Unrealistic Images in Deep Generative Networks?
Can We Find Neurons that Cause Unrealistic Images in Deep Generative Networks? Artifact Detection/Correction - Offcial PyTorch Implementation This rep
Pipeline code for Sequential-GAM(Genome Architecture Mapping).
Sequential-GAM Pipeline code for Sequential-GAM(Genome Architecture Mapping). mapping whole_preprocess.sh include the whole processing of mapping. usa
A natural language processing model for sequential sentence classification in medical abstracts.
NLP PubMed Medical Research Paper Abstract (Randomized Controlled Trial) A natural language processing model for sequential sentence classification in
Designed a greedy algorithm based on Markov sequential decision-making process in MATLAB/Python to optimize using Gurobi solver
Designed a greedy algorithm based on Markov sequential decision-making process in MATLAB/Python to optimize using Gurobi solver, the wheel size, gear shifting sequence by modeling drivetrain constraints to achieve maximum laps in a race with a 2-hour time window.
Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks
Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks arXiv preprint: https://arxiv.org/abs/2201.02143. Architec
Research into Forex price prediction from price history using Deep Sequence Modeling with Stacked LSTMs.
Forex Data Prediction via Recurrent Neural Network Deep Sequence Modeling Research Paper Our research paper can be viewed here Installation Clone the
Supervised forecasting of sequential data in Python.
Supervised forecasting of sequential data in Python. Intro Supervised forecasting is the machine learning task of making predictions for sequential da
Sequential GCN for Active Learning
Sequential GCN for Active Learning Please cite if using the code: Link to paper. Requirements: python 3.6+ torch 1.0+ pip libraries: tqdm, sklearn, sc
A modified Sequential and NLP based Bot
A modified Sequential and NLP based Bot I improvised this bot a bit with some implementations as a part of my own hobby project :) Note: I do not own
Transformer training code for sequential tasks
Sequential Transformer This is a code for training Transformers on sequential tasks such as language modeling. Unlike the original Transformer archite
The code for two papers: Feedback Transformer and Expire-Span.
transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing
Introduction Funnel-Transformer is a new self-attention model that gradually compresses the sequence of hidden states to a shorter one and hence reduc
This is the official source code of "BiCAT: Bi-Chronological Augmentation of Transformer for Sequential Recommendation".
BiCAT This is our TensorFlow implementation for the paper: "BiCAT: Sequential Recommendation with Bidirectional Chronological Augmentation of Transfor
Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022)
Blockwise Sequential Model Learning Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022) For ins
Download and preprocess popular sequential recommendation datasets
Sequential Recommendation Datasets This repository collects some commonly used sequential recommendation datasets in recent research papers and provid
Visualize large time-series data in plotly
plotly_resampler enables visualizing large sequential data by adding resampling functionality to Plotly figures. In this Plotly-Resampler demo over 11
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.
Omnidirectional Scene Text Detection with Sequential-free Box Discretization (IJCAI 2019). Including competition model, online demo, etc.
Box_Discretization_Network This repository is built on the pytorch [maskrcnn_benchmark]. The method is the foundation of our ReCTs-competition method
Statistical tests for the sequential locality of graphs
Statistical tests for the sequential locality of graphs You can assess the statistical significance of the sequential locality of an adjacency matrix
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.
TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".
SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph
Contrastively Disentangled Sequential Variational Audoencoder
Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d
The source code and dataset for the RecGURU paper (WSDM 2022)
RecGURU About The Project Source code and baselines for the RecGURU paper "RecGURU: Adversarial Learning of Generalized User Representations for Cross
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations Requirements python 3.6 torch 1.9 numpy 1.19 Quick Start The experimen
Locally Constrained Self-Attentive Sequential Recommendation
LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L
ConformalLayers: A non-linear sequential neural network with associative layers
ConformalLayers: A non-linear sequential neural network with associative layers ConformalLayers is a conformal embedding of sequential layers of Convo
This is our Tensorflow implementation for "Graph-based Embedding Smoothing for Sequential Recommendation" (GES) (TKDE, 2021).
Graph-based Embedding Smoothing (GES) This is our Tensorflow implementation for the paper: Tianyu Zhu, Leilei Sun, and Guoqing Chen. "Graph-based Embe
Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer
Introduction This is the repository of our accepted CIKM 2021 paper "Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Trans
RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation
RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation Pytorch based implemention of Relational Temporal
a Lightweight library for sequential learning agents, including reinforcement learning
SaLinA: SaLinA - A Flexible and Simple Library for Learning Sequential Agents (including Reinforcement Learning) TL;DR salina is a lightweight library
TensorFlow implementation of Adaptive Information Transfer Multi-task (AITM) framework. Code for the paper submitted to KDD21: Modeling the Sequential Dependence among Audience Multi-step Conversions with Multi-task Learning for Customer Acquisition.
AITM TensorFlow implementation of Adaptive Information Transfer Multi-task (AITM) framework. Code for the paper accepted by KDD21: Modeling the Sequen
Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation.
DuoRec Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation. Usage Download datasets fr
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.
Recurrent Variational Autoencoder that generates sequential data implemented with pytorch
Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's
Synthetic LiDAR sequential point cloud dataset with point-wise annotations
SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple
Official code for UnICORNN (ICML 2021)
UnICORNN (Undamped Independent Controlled Oscillatory RNN) [ICML 2021] This repository contains the implementation to reproduce the numerical experime
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data
LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn
StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking
StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking Datasets You can download datasets that have been pre-pr
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning
LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"
SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021
This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver
Python implementation of the Density Line Chart by Moritz & Fisher.
PyDLC - Density Line Charts with Python Python implementation of the Density Line Chart (Moritz & Fisher, 2018) to visualize large collections of time
Disagreement-Regularized Imitation Learning
Due to a normalization bug the expert trajectories have lower performance than the rl_baseline_zoo reported experts. Please see the following link in
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.
Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai
The code for two papers: Feedback Transformer and Expire-Span.
transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia
Code for AAAI 2021 paper: Sequential End-to-end Network for Efficient Person Search
This repository hosts the source code of our paper: [AAAI 2021]Sequential End-to-end Network for Efficient Person Search. SeqNet achieves the state-of
Sequential model-based optimization with a `scipy.optimize` interface
Scikit-Optimize Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements
Sequential Model-based Algorithm Configuration
SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho
BatchFlow helps you conveniently work with random or sequential batches of your data and define data processing and machine learning workflows even for datasets that do not fit into memory.
BatchFlow BatchFlow helps you conveniently work with random or sequential batches of your data and define data processing and machine learning workflo
Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Networks
CyGNet This repository reproduces the AAAI'21 paper “Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Network