510 Repositories
Python stabilizing-transformers-for-rl Libraries
Code for evaluating Japanese pretrained models provided by NTT Ltd.
japanese-dialog-transformers 日本語の説明文はこちら This repository provides the information necessary to evaluate the Japanese Transformer Encoder-decoder dialo
Natural Language Processing with transformers
we want to create a repo to illustrate usage of transformers in chinese
Search Git commits in natural language
NaLCoS - NAtural Language COmmit Search Search commit messages in your repository in natural language. NaLCoS (NAtural Language COmmit Search) is a co
Implementation of a Transformer, but completely in Triton
Transformer in Triton (wip) Implementation of a Transformer, but completely in Triton. I'm completely new to lower-level neural net code, so this repo
Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers (arXiv2021)
Polyp-PVT by Bo Dong, Wenhai Wang, Deng-Ping Fan, Jinpeng Li, Huazhu Fu, & Ling Shao. This repo is the official implementation of "Polyp-PVT: Polyp Se
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"
LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a
Code for lyric-section-to-comment generation based on huggingface transformers.
CommentGeneration Code for lyric-section-to-comment generation based on huggingface transformers. Migrate Guyu model and code (both 12-layers and 24-l
[ICCV 2021] Instance-level Image Retrieval using Reranking Transformers
Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev
Document processing using transformers
Doc Transformers Document processing using transformers. This is still in developmental phase, currently supports only extraction of form data i.e (ke
A PyTorch library for Vision Transformers
VFormer A PyTorch library for Vision Transformers Getting Started Read the contributing guidelines in CONTRIBUTING.rst to learn how to start contribut
Tutorial to pretrain & fine-tune a 🤗 Flax T5 model on a TPUv3-8 with GCP
Pretrain and Fine-tune a T5 model with Flax on GCP This tutorial details how pretrain and fine-tune a FlaxT5 model from HuggingFace using a TPU VM ava
official Pytorch implementation of ICCV 2021 paper FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting.
FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu
Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers.
Contra-OOD Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers. Requirements PyTorch Transformers datasets
CMT: Convolutional Neural Networks Meet Vision Transformers
CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer
A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks
pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks A Transformer-based library for SocialNLP classification tasks. Currently
"3D Human Texture Estimation from a Single Image with Transformers", ICCV 2021
Texformer: 3D Human Texture Estimation from a Single Image with Transformers This is the official implementation of "3D Human Texture Estimation from
Image Captioning using CNN and Transformers
Image-Captioning Keras/Tensorflow Image Captioning application using CNN and Transformer as encoder/decoder. In particulary, the architecture consists
pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks
A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks
Code for "Searching for Efficient Multi-Stage Vision Transformers"
Searching for Efficient Multi-Stage Vision Transformers This repository contains the official Pytorch implementation of "Searching for Efficient Multi
Collection of NLP model explanations and accompanying analysis tools
Thermostat is a large collection of NLP model explanations and accompanying analysis tools. Combines explainability methods from the captum library wi
An implementation of Fastformer: Additive Attention Can Be All You Need in TensorFlow
Fast Transformer This repo implements Fastformer: Additive Attention Can Be All You Need by Wu et al. in TensorFlow. Fast Transformer is a Transformer
Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.
Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.
DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS) data.
DeepConsensus DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS)
The official repository for our paper "The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers". We significantly improve the systematic generalization of transformer models on a variety of datasets using simple tricks and careful considerations.
Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper
Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of
Implementation of Fast Transformer in Pytorch
Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install
Many Class Activation Map methods implemented in Pytorch for CNNs and Vision Transformers. Including Grad-CAM, Grad-CAM++, Score-CAM, Ablation-CAM and XGrad-CAM
Class Activation Map methods implemented in Pytorch pip install grad-cam ⭐ Tested on many Common CNN Networks and Vision Transformers. ⭐ Includes smoo
Implementation of Fast Transformer in Pytorch
Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper
Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of
Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics.
Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics. Jury offers a smooth and easy-to-use interface. It uses datasets for underlying metric computation, and hence adding custom metric is easy as adopting datasets.Metric.
SOTR: Segmenting Objects with Transformers [ICCV 2021]
SOTR: Segmenting Objects with Transformers [ICCV 2021] By Ruohao Guo, Dantong Niu, Liao Qu, Zhenbo Li Introduction This is the official implementation
[ICCV 2021 Oral] PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers
PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers Created by Xumin Yu*, Yongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu, Jie Zhou
Official code for "Focal Self-attention for Local-Global Interactions in Vision Transformers"
Focal Transformer This is the official implementation of our Focal Transformer -- "Focal Self-attention for Local-Global Interactions in Vision Transf
Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)
CIRPLANT This repository contains the code and pre-trained models for Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT) For d
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).
Learn meanings behind words is a key element in NLP. This project concentrates on the disambiguation of preposition senses. Therefore, we train a bert-transformer model and surpass the state-of-the-art.
New State-of-the-Art in Preposition Sense Disambiguation Supervisor: Prof. Dr. Alexander Mehler Alexander Henlein Institutions: Goethe University TTLa
Refactoring dalle-pytorch and taming-transformers for TPU VM
Text-to-Image Translation (DALL-E) for TPU in Pytorch Refactoring Taming Transformers and DALLE-pytorch for TPU VM with Pytorch Lightning Requirements
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".
Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl
Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)
Progressive Transformers for End-to-End Sign Language Production Source code for "Progressive Transformers for End-to-End Sign Language Production" (B
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)
transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.
Sign Language Transformers (CVPR'20)
Sign Language Transformers (CVPR'20) This repo contains the training and evaluation code for the paper Sign Language Transformers: Sign Language Trans
This is an official implementation for "Self-Supervised Learning with Swin Transformers".
Self-Supervised Learning with Vision Transformers By Zhenda Xie*, Yutong Lin*, Zhuliang Yao, Zheng Zhang, Qi Dai, Yue Cao and Han Hu This repo is the
Text-to-Image generation
Generate vivid Images for Any (Chinese) text CogView is a pretrained (4B-param) transformer for text-to-image generation in general domain. Read our p
DeLighT: Very Deep and Light-Weight Transformers
DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I
Code for "Finetuning Pretrained Transformers into Variational Autoencoders"
transformers-into-vaes Code for Finetuning Pretrained Transformers into Variational Autoencoders (our submission to NLP Insights Workshop 2021). Gathe
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized
VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca
Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers
Visual Parser (ViP) This is the official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers. Key Feature
Scenic: A Jax Library for Computer Vision and Beyond
Scenic Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop c
[ICCV, 2021] Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks
Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks This is an official PyTorch code repository of the paper "Cloud Transformers:
Study of human inductive biases in CNNs and Transformers.
Are Convolutional Neural Networks or Transformers more like human vision? This repository contains the code and fine-tuned models of popular Convoluti
A library for finding knowledge neurons in pretrained transformer models.
knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t
Implementation of Multistream Transformers in Pytorch
Multistream Transformers Implementation of Multistream Transformers in Pytorch. This repository deviates slightly from the paper, where instead of usi
Dense Prediction Transformers
Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,
An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers
Sequence Feature Alignment (SFA) By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao This repository is an o
A library for finding knowledge neurons in pretrained transformer models.
knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t
This project is a sample demo of Arxiv search related to AI/ML Papers built using Streamlit, sentence-transformers and Faiss.
This project is a sample demo of Arxiv search related to AI/ML Papers built using Streamlit, sentence-transformers and Faiss.
Active learning for text classification in Python
Active Learning allows you to efficiently label training data in a small-data scenario.
Implementation of Multistream Transformers in Pytorch
Multistream Transformers Implementation of Multistream Transformers in Pytorch. This repository deviates slightly from the paper, where instead of usi
[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery
PlaneTR: Structure-Guided Transformers for 3D Plane Recovery This is the official implementation of our ICCV 2021 paper News There maybe some bugs in
Learned Token Pruning for Transformers
LTP: Learned Token Pruning for Transformers Check our paper for more details. Installation We follow the same installation procedure as the original H
Relative Positional Encoding for Transformers with Linear Complexity
Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.
ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.
English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo
RoBERTa Marathi Language model trained from scratch during huggingface 🤗 x flax community week
RoBERTa base model for Marathi Language (मराठी भाषा) Pretrained model on Marathi language using a masked language modeling (MLM) objective. RoBERTa wa
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).
Spanish Language Models 💃🏻 Corpora 📃 Corpora Number of documents Size (GB) BNE 201,080,084 570GB Models 🤖 RoBERTa-base BNE: https://huggingface.co
EsViT: Efficient self-supervised Vision Transformers
Efficient Self-Supervised Vision Transformers (EsViT) PyTorch implementation for EsViT, built with two techniques: A multi-stage Transformer architect
Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"
Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation This repository is the pytorch implementation of our paper: Hierarchical Cr
Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code
Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo
General Multi-label Image Classification with Transformers
General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio
[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang
Chasing Sparsity in Vision Transformers: An End-to-End Exploration Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Explora
Official repository for the paper "Going Beyond Linear Transformers with Recurrent Fast Weight Programmers"
Recurrent Fast Weight Programmers This is the official repository containing the code we used to produce the experimental results reported in the pape
Huggingface Transformers + Adapters = ❤️
adapter-transformers A friendly fork of HuggingFace's Transformers, adding Adapters to PyTorch language models adapter-transformers is an extension of
Flexible interface for high-performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra.
Flexible interface for high performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra. What is Lightning Tran
PyTorch impelementations of BERT-based Spelling Error Correction Models
PyTorch impelementations of BERT-based Spelling Error Correction Models
PyTorch impelementations of BERT-based Spelling Error Correction Models.
PyTorch impelementations of BERT-based Spelling Error Correction Models. 基于BERT的文本纠错模型,使用PyTorch实现。
AllenNLP integration for Shiba: Japanese CANINE model
Allennlp Integration for Shiba allennlp-shiab-model is a Python library that provides AllenNLP integration for shiba-model. SHIBA is an approximate re
LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021
LoFTR-with-train-script LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021 (with train script --- unofficial ---). About Megadepth
This is an official implementation for "Video Swin Transformers".
Video Swin Transformer By Ze Liu*, Jia Ning*, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin and Han Hu. This repo is the official implementation of "V
LETR: Line Segment Detection Using Transformers without Edges
LETR: Line Segment Detection Using Transformers without Edges Introduction This repository contains the official code and pretrained models for Line S
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".
3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and
PyTorch evaluation code for Delving Deep into the Generalization of Vision Transformers under Distribution Shifts.
Out-of-distribution Generalization Investigation on Vision Transformers This repository contains PyTorch evaluation code for Delving Deep into the Gen
easySpeech is an open-source Python wrapper for google speech to text API that doesn't require PyAudio(So you especially windows user don't have to deal with the errors while installing PyAudio) and also works with hugging face transformers
easySpeech easySpeech is an open source python wrapper for google speech to text api that doesn't require PyAaudio(So you specially windows user don't
An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"
RASP Setup Mac or Linux Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to insta
2021海华AI挑战赛·中文阅读理解·技术组·第三名
文字是人类用以记录和表达的最基本工具,也是信息传播的重要媒介。透过文字与符号,我们可以追寻人类文明的起源,可以传播知识与经验,读懂文字是认识与了解的第一步。对于人工智能而言,它的核心问题之一就是认知,而认知的核心则是语义理解。
Official implementation of "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers"
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".
Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers
Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep
Load What You Need: Smaller Multilingual Transformers for Pytorch and TensorFlow 2.0.
Smaller Multilingual Transformers This repository shares smaller versions of multilingual transformers that keep the same representations offered by t
Official repository for "On Improving Adversarial Transferability of Vision Transformers" (2021)
Improving-Adversarial-Transferability-of-Vision-Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Khan, Fatih Porikli arxiv link A
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.
Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By
CATs: Semantic Correspondence with Transformers
CATs: Semantic Correspondence with Transformers For more information, check out the paper on [arXiv]. Training with different backbones and evaluation
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning
We challenge a common assumption underlying most supervised deep learning: that a model makes a prediction depending only on its parameters and the features of a single input. To this end, we introduce a general-purpose deep learning architecture that takes as input the entire dataset instead of processing one datapoint at a time.
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch
Official repository for "Intriguing Properties of Vision Transformers" (2021)
Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P
Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)
Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation) HOTR: End-to-
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.
Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut
simpleT5 is built on top of PyTorch-lightning⚡️ and Transformers🤗 that lets you quickly train your T5 models.
Quickly train T5 models in just 3 lines of code + ONNX support simpleT5 is built on top of PyTorch-lightning ⚡️ and Transformers 🤗 that lets you quic
Implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification
CrossViT : Cross-Attention Multi-Scale Vision Transformer for Image Classification This is an unofficial PyTorch implementation of CrossViT: Cross-Att
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.
Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut