119 Repositories
Python variational-bayes Libraries
Collaborative variational bandwidth auto-encoder (VBAE) for recommender systems.
Collaborative Variational Bandwidth Auto-encoder The codes are associated with the following paper: Collaborative Variational Bandwidth Auto-encoder f
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms
Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Aesara
PyMC3 is a Python package for Bayesian statistical modeling and Probabilistic Machine Learning focusing on advanced Markov chain Monte Carlo (MCMC) an
[CVPR 2021 Oral] Variational Relational Point Completion Network
VRCNet: Variational Relational Point Completion Network This repository contains the PyTorch implementation of the paper: Variational Relational Point
DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021
DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayesian-Torch is designed to be flexible and seamless in extending a deterministic deep neural network architecture to corresponding Bayesian form by simply replacing the deterministic layers with Bayesian layers.
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020
Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T
A probabilistic programming language in TensorFlow. Deep generative models, variational inference.
Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilis
Gaussian processes in TensorFlow
Website | Documentation (release) | Documentation (develop) | Glossary Table of Contents What does GPflow do? Installation Getting Started with GPflow
Deep universal probabilistic programming with Python and PyTorch
Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)
Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning
Modular Probabilistic Programming on MXNet
MXFusion | | | | Tutorials | Documentation | Contribution Guide MXFusion is a modular deep probabilistic programming library. With MXFusion Modules yo
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch
PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari
Bayesian dessert for Lasagne
Gelato Bayesian dessert for Lasagne Recent results in Bayesian statistics for constructing robust neural networks have proved that it is one of the be
Deep universal probabilistic programming with Python and PyTorch
Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab
Open-AI's DALL-E for large scale training in mesh-tensorflow.
DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode
Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS)
Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS) Yoonhyung Lee, Joongbo Shin, Kyomin Jung Abstract: Although early
Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Theano
PyMC3 is a Python package for Bayesian statistical modeling and Probabilistic Machine Learning focusing on advanced Markov chain Monte Carlo (MCMC) an
H2O is an Open Source, Distributed, Fast & Scalable Machine Learning Platform: Deep Learning, Gradient Boosting (GBM) & XGBoost, Random Forest, Generalized Linear Modeling (GLM with Elastic Net), K-Means, PCA, Generalized Additive Models (GAM), RuleFit, Support Vector Machine (SVM), Stacked Ensembles, Automatic Machine Learning (AutoML), etc.
H2O H2O is an in-memory platform for distributed, scalable machine learning. H2O uses familiar interfaces like R, Python, Scala, Java, JSON and the Fl