146 Repositories
Python variational-autoencoder Libraries
VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training
Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training [Arxiv] VideoMAE: Masked Autoencoders are Data-Efficient Learne
DeepStruc is a Conditional Variational Autoencoder which can predict the mono-metallic nanoparticle from a Pair Distribution Function.
ChemRxiv | [Paper] XXX DeepStruc Welcome to DeepStruc, a Deep Generative Model (DGM) that learns the relation between PDF and atomic structure and the
Trajectory Variational Autoencder baseline for Multi-Agent Behavior challenge 2022
MABe_2022_TVAE: a Trajectory Variational Autoencoder baseline for the 2022 Multi-Agent Behavior challenge This repository contains jupyter notebooks t
Repo for the Tutorials of Day1-Day3 of the Nordic Probabilistic AI School 2021 (https://probabilistic.ai/)
ProbAI 2021 - Probabilistic Programming and Variational Inference Tutorial with Pryo Day 1 (June 14) Slides Notebook: students_PPLs_Intro Notebook: so
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder
RAVE: Realtime Audio Variational autoEncoder Official implementation of RAVE: A variational autoencoder for fast and high-quality neural audio synthes
This repository contains the data and code for the paper "Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors" (SPNLP@ACL2022)
GP-VAE This repository provides datasets and code for preprocessing, training and testing models for the paper: Diverse Text Generation via Variationa
scAR (single-cell Ambient Remover) is a package for data denoising in single-cell omics.
scAR scAR (single cell Ambient Remover) is a package for denoising multiple single cell omics data. It can be used for multiple tasks, such as, sgRNA
A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)
A variational Bayesian method for similarity learning in non-rigid image registration We provide the source code and the trained models used in the re
Hierarchical-Bayesian-Defense - Towards Adversarial Robustness of Bayesian Neural Network through Hierarchical Variational Inference (Openreview)
Towards Adversarial Robustness of Bayesian Neural Network through Hierarchical V
Split Variational AutoEncoder
Split-VAE Split Variational AutoEncoder Introduction This repository contains and implemementation of a Split Variational AutoEncoder (SVAE). In a SVA
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many
Filtering variational quantum algorithms for combinatorial optimization
Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently.
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.
Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio
An Empirical Review of Optimization Techniques for Quantum Variational Circuits
QVC Optimizer Review Code for the paper "An Empirical Review of Optimization Techniques for Quantum Variational Circuits". Each of the python files ca
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)
ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation
The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.
NTIRE 2022 - Image Inpainting Challenge Important dates 2022.02.01: Release of train data (input and output images) and validation data (only input) 2
Training DiffWave using variational method from Variational Diffusion Models.
Variational DiffWave Training DiffWave using variational method from Variational Diffusion Models. Quick Start python train_distributed.py discrete_10
GAN-based Matrix Factorization for Recommender Systems
GAN-based Matrix Factorization for Recommender Systems This repository contains the datasets' splits, the source code of the experiments and their res
This module is used to create Convolutional AutoEncoders for Variational Data Assimilation
VarDACAE This module is used to create Convolutional AutoEncoders for Variational Data Assimilation. A user can define, create and train an AE for Dat
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code
sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)
Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng
This is just a funny project that we want to see AutoEncoder (AE) can actually work to enhance the features we want
Funny_muscle_enhancer :) 1.Discription: This is just a funny project that we want to see AutoEncoder (AE) can actually work on the some features. We w
Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data
VIMuRe Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data. If you use this code please cite this article (preprint). De
Code of 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces
3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces Installation After cloning the repo open
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.
CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,
Linear Variational State Space Filters
Linear Variational State Space Filters To set up the environment, use the provided scripts in the docker/ folder to build and run the codebase inside
Repository for the AugmentedPCA Python package.
Overview This Python package provides implementations of Augmented Principal Component Analysis (AugmentedPCA) - a family of linear factor models that
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)
Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin
A PyTorch implementation of the continual learning experiments with deep neural networks
Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain
Clustering with variational Bayes and population Monte Carlo
pypmc pypmc is a python package focusing on adaptive importance sampling. It can be used for integration and sampling from a user-defined target densi
Source code for Task-Aware Variational Adversarial Active Learning
Task-Aware Variational Adversarial Active Learning - Official Pytorch implementation of the CVPR 2021 paper Kwanyoung Kim, Dongwon Park, Kwang In Kim,
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more
Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'
Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.
A simple Tensorflow based library for deep and/or denoising AutoEncoder.
libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders
Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes
Autoencoder - Reducing the Dimensionality of Data with Neural Network
autoencoder Implementation of the Reducing the Dimensionality of Data with Neural Network – G. E. Hinton and R. R. Salakhutdinov paper. Notes Aim to m
Benchmark VAE - Library for Variational Autoencoder benchmarking
Documentation pythae This library implements some of the most common (Variational) Autoencoder models. In particular it provides the possibility to pe
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"
Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.
CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,
Machine learning algorithms for many-body quantum systems
NetKet NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".
HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit
Texture mapping with variational auto-encoders
vae-textures This is an experiment with using variational autoencoders (VAEs) to perform mesh parameterization. This was also my first project using J
Tensorflow Implementation of ECCV'18 paper: Multimodal Human Motion Synthesis
MT-VAE for Multimodal Human Motion Synthesis This is the code for ECCV 2018 paper MT-VAE: Learning Motion Transformations to Generate Multimodal Human
Repo for Enhanced Seq2Seq Autoencoder via Contrastive Learning for Abstractive Text Summarization
ESACL: Enhanced Seq2Seq Autoencoder via Contrastive Learning for AbstractiveText Summarization This repo is for our paper "Enhanced Seq2Seq Autoencode
An SE(3)-invariant autoencoder for generating the periodic structure of materials
Crystal Diffusion Variational AutoEncoder This software implementes Crystal Diffusion Variational AutoEncoder (CDVAE), which generates the periodic st
Self-Supervised CNN-GCN Autoencoder
GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published
PyTorch implementation of normalizing flow models
PyTorch implementation of normalizing flow models
Visual Adversarial Imitation Learning using Variational Models (VMAIL)
Visual Adversarial Imitation Learning using Variational Models (VMAIL) This is the official implementation of the NeurIPS 2021 paper. Project website
Junction Tree Variational Autoencoder for Molecular Graph Generation (ICML 2018)
Junction Tree Variational Autoencoder for Molecular Graph Generation Official implementation of our Junction Tree Variational Autoencoder https://arxi
Code for `BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery`, Neurips 2021
This folder contains the code for 'Scalable Variational Approaches for Bayesian Causal Discovery'. Installation To install, use conda with conda env c
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies
Deconfounding Temporal Autoencoder (DTA) This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Tim
PyTorch Implementation of Vector Quantized Variational AutoEncoders.
Pytorch implementation of VQVAE. This paper combines 2 tricks: Vector Quantization (check out this amazing blog for better understanding.) Straight-Th
Jax/Flax implementation of Variational-DiffWave.
jax-variational-diffwave Jax/Flax implementation of Variational-DiffWave. (Zhifeng Kong et al., 2020, Diederik P. Kingma et al., 2021.) DiffWave with
Fast mesh denoising with data driven normal filtering using deep variational autoencoders
Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".
Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer
Contrastively Disentangled Sequential Variational Audoencoder
Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d
A TensorFlow 2.x implementation of Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners A TensorFlow implementation of Masked Autoencoders Are Scalable Vision Learners [1]. Our implementati
Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.
Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.
faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2
Use unsupervised and supervised learning to predict stocks
AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."
alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)
ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.
cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut
Age Progression/Regression by Conditional Adversarial Autoencoder
Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE) TensorFlow implementation of the algorithm in the paper Age Progression/Regre
Ladder Variational Autoencoders (LVAE) in PyTorch
Ladder Variational Autoencoders (LVAE) PyTorch implementation of Ladder Variational Autoencoders (LVAE) [1]: where the variational distributions q at
Collection of generative models in Tensorflow
tensorflow-generative-model-collections Tensorflow implementation of various GANs and VAEs. Related Repositories Pytorch version Pytorch version of th
The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational Autoencoders".
Open-KG-canonicalization The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder
SegNet-like Autoencoders in TensorFlow
SegNet SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a
Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)
AlbUNet-1D-2D-Tensorflow-Keras This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed
Code for the Paper: Conditional Variational Capsule Network for Open Set Recognition
Conditional Variational Capsule Network for Open Set Recognition This repository hosts the official code related to "Conditional Variational Capsule N
Codes for 'Dual Parameterization of Sparse Variational Gaussian Processes'
Dual Parameterization of Sparse Variational Gaussian Processes Documentation | Notebooks | API reference Introduction This repository is the official
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.
Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat
Code for "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper and code updated from ICLR 2021)
Discovering Non-monotonic Autoregressive Orderings with Variational Inference Description This package contains the source code implementation of the
VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries
VACA Code repository for the paper "VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries (arXiv)". The impleme
PyTorch and GPyTorch implementation of the paper "Conditioning Sparse Variational Gaussian Processes for Online Decision-making."
Conditioning Sparse Variational Gaussian Processes for Online Decision-making This repository contains a PyTorch and GPyTorch implementation of the pa
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'
NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p
Code for our paper: Online Variational Filtering and Parameter Learning
Variational Filtering To run phi learning on linear gaussian (Fig1a) python linear_gaussian_phi_learning.py To run phi and theta learning on linear g
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.
PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders Getting Started Install requirements with Anaconda: conda env c
Code for the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"
DU-VAE This is the pytorch implementation of the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness" Acknowledgement
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"
Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p
Bayesian Meta-Learning Through Variational Gaussian Processes
vmgp This is the repository of Vivek Myers and Nikhil Sardana for our CS 330 final project, Bayesian Meta-Learning Through Variational Gaussian Proces
Variational autoencoder for anime face reconstruction
VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network
Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto
Individual Tree Crown classification on WorldView-2 Images using Autoencoder -- Group 9 Weak learners - Final Project (Machine Learning 2020 Course)
Created by Olga Sutyrina, Sarah Elemili, Abduragim Shtanchaev and Artur Bille Individual Tree Crown classification on WorldView-2 Images using Autoenc
Patch-Based Deep Autoencoder for Point Cloud Geometry Compression
Patch-Based Deep Autoencoder for Point Cloud Geometry Compression Overview The ever-increasing 3D application makes the point cloud compression unprec
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis
Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre
Multiple style transfer via variational autoencoder
ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution
unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled
This repository implements variational graph auto encoder by Thomas Kipf.
Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to
Data Augmentation with Variational Autoencoders
Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders
Video Autoencoder: self-supervised disentanglement of 3D structure and motion
Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced
TensorFlow implementation of "Variational Inference with Normalizing Flows"
[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co
Recurrent Variational Autoencoder that generates sequential data implemented with pytorch
Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's
Abstractive opinion summarization system (SelSum) and the largest dataset of Amazon product summaries (AmaSum). EMNLP 2021 conference paper.
Learning Opinion Summarizers by Selecting Informative Reviews This repository contains the codebase and the dataset for the corresponding EMNLP 2021
Source code for the paper "TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly Representations"
TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly Representations Created by Jiahao Pang, Duanshun Li, and Dong Tian from InterDigital In