56 Repositories
Python resnet Libraries
torchlm is aims to build a high level pipeline for face landmarks detection, it supports training, evaluating, exporting, inference(Python/C++) and 100+ data augmentations
💎A high level pipeline for face landmarks detection, supports training, evaluating, exporting, inference and 100+ data augmentations, compatible with torchvision and albumentations, can easily install with pip.
Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.
Pre-trained image classification models for Jax/Haiku Jax/Haiku Applications are deep learning models that are made available alongside pre-trained we
A Novel Plug-in Module for Fine-grained Visual Classification
Pytorch implementation for A Novel Plug-in Module for Fine-Grained Visual Classification. fine-grained visual classification task.
RRL: Resnet as representation for Reinforcement Learning
Resnet as representation for Reinforcement Learning (RRL) is a simple yet effective approach for training behaviors directly from visual inputs. We demonstrate that features learned by standard image classification models are general towards different task, robust to visual distractors, and when used in conjunction with standard Imitation Learning or Reinforcement Learning pipelines can efficiently acquire behaviors directly from proprioceptive inputs.
Multi-label classification of retinal disorders
Multi-label classification of retinal disorders This is a deep learning course project. The goal is to develop a solution, using computer vision techn
Low Complexity Channel estimation with Neural Network Solutions
Interpolation-ResNet Invited paper for WSA 2021, called 'Low Complexity Channel estimation with Neural Network Solutions'. Low complexity residual con
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition
ademxapp Visual applications by the University of Adelaide In designing our Model A, we did not over-optimize its structure for efficiency unless it w
PyTorch implementation(s) of various ResNet models from Twitch streams.
pytorch-resnet-twitch PyTorch implementation(s) of various ResNet models from Twitch streams. Status: ResNet50 currently not working. Will update in n
🙄 Difficult algorithm, Simple code.
🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.
cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework
Image-popularity-score - A novel deep regression method for image scoring.
Image-popularity-score - A novel deep regression method for image scoring.
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)
Self-labelling via simultaneous clustering and representation learning 🆗 🆗 🎉 NEW models (20th August 2020): Added standard SeLa pretrained torchvis
MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks
MEAL-V2 This is the official pytorch implementation of our paper: "MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tric
2.86% and 15.85% on CIFAR-10 and CIFAR-100
Shake-Shake regularization This repository contains the code for the paper Shake-Shake regularization. This arxiv paper is an extension of Shake-Shake
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet
Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran
OpenMMLab Image Classification Toolbox and Benchmark
Introduction English | 简体ä¸æ–‡ MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. D
Deeplab-resnet-101 in Pytorch with Jaccard loss
Deeplab-resnet-101 Pytorch with Lovász hinge loss Train deeplab-resnet-101 with binary Jaccard loss surrogate, the Lovász hinge, as described in http:
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.
DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up
DeepLab-ResNet rebuilt in TensorFlow
DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr
Segmentation models with pretrained backbones. Keras and TensorFlow Keras.
Python library with Neural Networks for Image Segmentation based on Keras and TensorFlow. The main features of this library are: High level API (just
Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)
AlbUNet-1D-2D-Tensorflow-Keras This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed
QAT(quantize aware training) for classification with MQBench
MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl
Image Segmentation using U-Net, U-Net with skip connections and M-Net architectures
Brain-Image-Segmentation Segmentation of brain tissues in MRI image has a number of applications in diagnosis, surgical planning, and treatment of bra
RMNet: Equivalently Removing Residual Connection from Networks
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.
RMNet: Equivalently Removing Residual Connection from Networks This repository is the official implementation of "RMNet: Equivalently Removing Residua
PyTorch implementation of Octave Convolution with pre-trained Oct-ResNet and Oct-MobileNet models
octconv.pytorch PyTorch implementation of Octave Convolution in Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octa
PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more
PyTorch Image Models Sponsors What's New Introduction Models Features Results Getting Started (Documentation) Train, Validation, Inference Scripts Awe
TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.
A Brain Tumor Detection and Classification Model built using RESNET50 architecture. The model is also deployed as a web application using Flask framework.
Deep Residual Networks with 1K Layers
Deep Residual Networks with 1K Layers By Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Microsoft Research Asia (MSRA). Table of Contents Introduc
A pytorch-based deep learning framework for multi-modal 2D/3D medical image segmentation
A 3D multi-modal medical image segmentation library in PyTorch We strongly believe in open and reproducible deep learning research. Our goal is to imp
PyTorch implementation of DeepDream algorithm
neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br
High level network definitions with pre-trained weights in TensorFlow
TensorNets High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 = TF = 1.4.0). Guiding principles Applicability.
DeepLab resnet v2 model in pytorch
pytorch-deeplab-resnet DeepLab resnet v2 model implementation in pytorch. The architecture of deepLab-ResNet has been replicated exactly as it is from
Reproduces ResNet-V3 with pytorch
ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar
Wide Residual Networks (WideResNets) in PyTorch
Wide Residual Networks (WideResNets) in PyTorch WideResNets for CIFAR10/100 implemented in PyTorch. This implementation requires less GPU memory than
Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch
Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch
Base pretrained models and datasets in pytorch (MNIST, SVHN, CIFAR10, CIFAR100, STL10, AlexNet, VGG16, VGG19, ResNet, Inception, SqueezeNet)
This is a playground for pytorch beginners, which contains predefined models on popular dataset. Currently we support mnist, svhn cifar10, cifar100 st
Visual Question Answering in Pytorch
Visual Question Answering in pytorch /!\ New version of pytorch for VQA available here: https://github.com/Cadene/block.bootstrap.pytorch This repo wa
PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.
MoCo v3 for Self-supervised ResNet and ViT Introduction This is a PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT. The original M
Learning and Building Convolutional Neural Networks using PyTorch
Image Classification Using Deep Learning Learning and Building Convolutional Neural Networks using PyTorch. Models, selected are based on number of ci
TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.
FunMatch-Distillation TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A g
A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks)
A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks) This repository contains a PyTorch implementation for the paper: Deep Pyra
PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal Convolutions for Action Recognition"
R2Plus1D-PyTorch PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod
improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.
CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea
Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.
Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.
Focus on Algorithm Design, Not on Data Wrangling
The dataTap Python library is the primary interface for using dataTap's rich data management tools. Create datasets, stream annotations, and analyze model performance all with one library.
Pretrained Pytorch face detection (MTCNN) and recognition (InceptionResnet) models
Face Recognition Using Pytorch Python 3.7 3.6 3.5 Status This is a repository for Inception Resnet (V1) models in pytorch, pretrained on VGGFace2 and
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)
Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki
3D ResNet Video Classification accelerated by TensorRT
Activity Recognition TensorRT Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT P.S Click on
Pretrained ConvNets for pytorch: NASNet, ResNeXt, ResNet, InceptionV4, InceptionResnetV2, Xception, DPN, etc.
Pretrained models for Pytorch (Work in progress) The goal of this repo is: to help to reproduce research papers results (transfer learning setups for
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.
OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati
Machine learning, in numpy
numpy-ml Ever wish you had an inefficient but somewhat legible collection of machine learning algorithms implemented exclusively in NumPy? No? Install
PyTorch implementation of DeepDream algorithm
neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br