Improving Contrastive Learning by Visualizing Feature Transformation, ICCV 2021 Oral

Overview

Improving Contrastive Learning by Visualizing Feature Transformation

This project hosts the codes, models and visualization tools for the paper:

Improving Contrastive Learning by Visualizing Feature Transformation,
Rui Zhu*, Bingchen Zhao*, Jingen Liu, Zhenglong Sun, Chang Wen Chen
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, Oral
arXiv preprint (arXiv 2108.02982)

@inproceedings{zhu2021Improving,
  title={Improving Contrastive Learning by Visualizing Feature Transformation},
  author={Zhu, Rui and Zhao, Bingchen and Liu, Jingen and Sun, Zhenglong and Chen, Chang Wen},
  booktitle =  {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
}

highlights2

Highlights

  • Visualization Tools: We provide a visualization tool for pos/neg score distribution, which enables us to analyze, interpret and understand the contrastive learning process.
  • Feature Transformation: Inspired by the visualization, we propose a simple yet effective feature transformation (FT), which creates both hard positives and diversified negatives to enhance the training. FT enables to learn more view-invariant and discriminative representations.
  • Less Task-biased: FT makes the model less “task-bias”, which means we can achievesignificant performance improvement on various downstream tasks (object detection, instance segmentation, and long-tailed classification).

highlights

Updates

  • Code, pre-trained models and visualization tools are released. (07/08/2021)

Installation

This project is mainly based on the open-source code PyContrast.

Please refer to the INSTALL.md and RUN.md for installation and dataset preparation.

Models

For your convenience, we provide the following pre-trained models on ImageNet-1K and ImageNet-100.

pre-train method pre-train dataset backbone #epoch ImageNet-1K VOC det AP50 COCO det AP Link
Supervised ImageNet-1K ResNet-50 - 76.1 81.3 38.2 download
MoCo-v1 ImageNet-1K ResNet-50 200 60.6 81.5 38.5 download
MoCo-v1+FT ImageNet-1K ResNet-50 200 61.9 82.0 39.0 download
MoCo-v2 ImageNet-1K ResNet-50 200 67.5 82.4 39.0 download
MoCo-v2+FT ImageNet-1K ResNet-50 200 69.6 83.3 39.5 download
MoCo-v1+FT ImageNet-100 ResNet-50 200 IN-100 result 77.2 - - download

Note:

  • See our paper for more results on different benchmarks.

Usage

Training on IN-1K

python main_contrast.py --method MoCov2 --data_folder your/path/to/imagenet-1K/dataset  --dataset imagenet  --epochs 200 --input_res 224 --cosine --batch_size 256 --learning_rate 0.03   --mixnorm --mixnorm_target posneg --sep_alpha --pos_alpha 2.0 --neg_alpha 1.6 --mask_distribution beta --expolation_mask --alpha 0.999 --multiprocessing-distributed --world-size 1 --rank 0 --save_score

Linear Evaluation on IN-1K

python main_linear.py --method MoCov2 --data_folder your/path/to/imagenet-1K/dataset --ckpt your/path/to/pretrain_model   --n_class 1000 --multiprocessing-distributed --world-size 1 --rank 0 --epochs 100 --lr_decay_epochs 60,80

Training on IN-100

python main_contrast.py --method MoCov2 --data_folder your/path/to/imagenet-1K/dataset  --dataset imagenet100  --imagenet100path your/path/to/imagenet100.class  --epochs 200 --input_res 224 --cosine --batch_size 256 --learning_rate 0.03   --mixnorm --mixnorm_target posneg --sep_alpha --pos_alpha 2.0 --neg_alpha 1.6 --mask_distribution beta --expolation_mask --alpha 0.999 --multiprocessing-distributed --world-size 1 --rank 0 --save_score

Linear Evaluation on IN-100

python main_linear.py --method MoCov2 --data_folder your/path/to/imagenet-1K/dataset  --dataset imagenet100  --imagenet100path your/path/to/imagenet100.class  --n_class 100  --ckpt your/path/to/pretrain_model  --multiprocessing-distributed --world-size 1 --rank 0 

Transferring to Object Detection

Please refer to DenseCL and MoCo for transferring to object detection.

Visualization Tools

  • Our visualization is offline, which almost does not affect the training speed. Instead of storing K (65536) pair scores, we save their statistical mean and variance to represent the scores’ distribution. You can refer to the original paper for the details.

  • Visualization code is line 69-74 to store the scores. And then we further process the scores in the IpythonNotebook for drawing.

Citations

Please consider citing our paper in your publications if the project helps your research. BibTeX reference is as follow.

@inproceedings{zhu2021Improving,
  title={Improving Contrastive Learning by Visualizing Feature Transformation},
  author={Zhu, Rui and Zhao, Bingchen and Liu, Jingen and Sun, Zhenglong and Chen, Chang Wen},
  booktitle =  {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
}
You might also like...
[ICCV 2021 Oral] NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo
[ICCV 2021 Oral] NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo

NerfingMVS Project Page | Paper | Video | Data NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo Yi Wei, Shaohui

[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views

Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re

ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral)
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral)

ILVR + ADM This is the implementation of ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral). This repository is h

Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).
Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper] DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context G

A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)
A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

[ICCV 2021 Oral] SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer
[ICCV 2021 Oral] SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer

This repository contains the source code for the paper SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer (ICCV 2021 Oral). The project page is here.

[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

A PyTorch implementation of ICLR 2022 Oral paper PiCO: Contrastive Label Disambiguation for Partial Label Learning
A PyTorch implementation of ICLR 2022 Oral paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning
[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning (CVPR 2022 Oral) 2022-03-29: The paper was selected as a CVPR 2022 Oral paper! 2

Comments
  • Training speed is much slower than the offcial moco

    Training speed is much slower than the offcial moco

    I am a freshman in self-supervised learning. I run this repo just following the readme python main_contrast.py --method MoCov2 --data_folder your/path/to/imagenet-1K/dataset --dataset imagenet --epochs 200 --input_res 224 --cosine --batch_size 256 --learning_rate 0.03 --mixnorm --mixnorm_target posneg --sep_alpha --pos_alpha 2.0 --neg_alpha 1.6 --mask_distribution beta --expolation_mask --alpha 0.999 --multiprocessing-distributed --world-size 1 --rank 0 --save_score and find the speed is much slower than the offcial moco and moco_v2. I don't know what I did wrong.

    opened by zhujiagang 2
  • loss does not drop when training mocov2 on IN-100

    loss does not drop when training mocov2 on IN-100

    Hi, thanks for sharing the code. I just tried to reproduce the result of mocov2 on IN-100 following the README.

    python main_contrast.py --method MoCov2 --data_folder your/path/to/imagenet-1K/dataset  --dataset imagenet100  --imagenet100path your/path/to/imagenet100.class  --epochs 200 --input_res 224 --cosine --batch_size 256 --learning_rate 0.03   --mixnorm --mixnorm_target posneg --sep_alpha --pos_alpha 2.0 --neg_alpha 1.6 --mask_distribution beta --expolation_mask --alpha 0.999 --multiprocessing-distributed --world-size 1 --rank 0 --save_score
    

    The loss value goes up at the beginning of training (this is normal behavior since the queue is being filled), but it stays at the value 11.09 and does not drop. I wonder if it's the expected behavior? or can you provide a training log of this case? Thanks in advance.

    opened by ttccxx 2
Owner
Bingchen Zhao
Currently study @ Tongji University, Super interested in DL and its applications
Bingchen Zhao
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
Code Release for ICCV 2021 (oral), "AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds"

AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds (ICCV 2021 oral) **Project Page | Arxiv ** Runsong Zhu¹, Yuan Liu², Zhen Dong¹, Te

null 40 Dec 30, 2022
The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:

null 9 Nov 14, 2022
Code for CVPR 2021 oral paper "Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts"

Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts The rapid progress in 3D scene understanding has come with growing dem

Facebook Research 182 Dec 30, 2022
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

null 42 Nov 17, 2022
Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

ERICA Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive L

THUNLP 75 Nov 2, 2022
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022
BARF: Bundle-Adjusting Neural Radiance Fields 🤮 (ICCV 2021 oral)

BARF ?? : Bundle-Adjusting Neural Radiance Fields Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey IEEE International Conference on Comp

Chen-Hsuan Lin 539 Dec 28, 2022
[ICCV 2021 Oral] PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers

PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers Created by Xumin Yu*, Yongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu, Jie Zhou

Xumin Yu 317 Dec 26, 2022
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Pixel Difference Convolution This repository contains the PyTorch implementation for "Pixel Difference Networks for Efficient Edge Detection" by Zhuo

Alex 236 Dec 21, 2022