Code for "Localization with Sampling-Argmax", NeurIPS 2021

Overview

Localization with Sampling-Argmax

[Paper] [arXiv] [Project Page]

Localization with Sampling-Argmax
Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-Lu Li, Cewu Lu
NeurIPS 2021


Differentiable Sampling

Code is coming soon!

If you find our code or paper useful, please consider citing

@inproceedings{li2021localization,
    title={Localization with Sampling-Argmax},
    author={Li, Jiefeng and Chen, Tong and Shi, Ruiqi and Lou, Yujing and Li, Yong-Lu and Lu, Cewu},
    booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
    year={2021}
}
You might also like...
Code repo for
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc

[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations
[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations

Learning to Compose Visual Relations This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations. Demo Imag

Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

Code for NeurIPS 2021 paper: Invariant Causal Imitation Learning for Generalizable Policies

Invariant Causal Imitation Learning for Generalizable Policies Ioana Bica, Daniel Jarrett, Mihaela van der Schaar Neural Information Processing System

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

[NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning
[NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning

SoCo [NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning By Fangyun Wei*, Yue Gao*, Zhirong Wu, Han Hu,

Comments
  • I wonder why

    I wonder why "training with only sample outperforms soft-argmax"

    Thanks for your great work! I've just read your paper and the discussions on OpenReview, and have the same question with the reviewer——

    Although it's indicated in "We conduct an experiment of training the model with Eq. 5. The model only obtains 30.9 mAP on COCO Keypoint" that training with discrete density map can not work, I still wonder why sampling (works) and why "training with only sample outperforms soft-argmax"

    opened by Indigo6 1
  • Annealing Schedule

    Annealing Schedule

    Hello, the paper mentions you use an annealing schedule going from high to low temperature. In the review its mentioned how the method is parameter free, I take it you found a single annealing schedule that worked effectively for the temperature during training? I was wondering since the code is not published yet if you could provide the schedule you used.

    On a side note it's great to see more research on soft-argmax! Thank you to all of the authors :clap:

    opened by csvance 1
  • issue?

    issue?

    Hi, in the function of norm_heatmap, it writes gumbel_heatmap = heatmap - log_eps / tau, which is different from gumbel_heatmap = (heatmap - log_eps)/ tau in the gumbel_softmax. Is this matter when training with annealing strategy?

    opened by DIVE128 0
  • why custom the backward() for predicted score_map in this form ?

    why custom the backward() for predicted score_map in this form ?

    Thanks for your wonderful work. But I am confused about the custom backward in ClipIntegral, why the derivative of this operation is binarized as {-1, 1} by the comparison between weight and output_coord ?

    https://github.com/Jeff-sjtu/sampling-argmax/blob/12c80742b287989705faab60dd6ffff96c7353a6/sampling_argmax/models/simplepose.py#L87

    opened by FlorinShum 0
Owner
JeffLi
jeff.lee.sjtu[at]gmail[dot]com
JeffLi
Companion code for the paper "An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence" (NeurIPS 2021)

ReLU-GP Residual (RGPR) This repository contains code for reproducing the following NeurIPS 2021 paper: @inproceedings{kristiadi2021infinite, title=

Agustinus Kristiadi 4 Dec 26, 2021
This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)

Transferability for domain generalization This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on

gordon 9 Nov 29, 2022
Code for MarioNette: Self-Supervised Sprite Learning, in NeurIPS 2021

MarioNette | Webpage | Paper | Video MarioNette: Self-Supervised Sprite Learning Dmitriy Smirnov, Michaël Gharbi, Matthew Fisher, Vitor Guizilini, Ale

Dima Smirnov 28 Nov 18, 2022
Code for Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021)

Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021) authors: Boris Knyazev, Michal Drozdzal, Graham Taylor, Adriana Romero-Soriano Overv

Facebook Research 462 Jan 3, 2023
Code for our NeurIPS 2021 paper 'Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation'

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation (NeurIPS 2021) Code for our NeurIPS 2021 paper 'Exploiting the Intri

Shiqi Yang 53 Dec 25, 2022
Official code for On Path Integration of Grid Cells: Group Representation and Isotropic Scaling (NeurIPS 2021)

On Path Integration of Grid Cells: Group Representation and Isotropic Scaling This repo contains the official implementation for the paper On Path Int

Ruiqi Gao 39 Nov 10, 2022
This GitHub repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.'

About Repository This repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.' About Code

Arun Verma 1 Nov 9, 2021
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
[NeurIPS 2021] Code for Unsupervised Learning of Compositional Energy Concepts

Unsupervised Learning of Compositional Energy Concepts This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.

null 45 Nov 30, 2022
Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L

null 6 Dec 19, 2022