Latent Execution for Neural Program Synthesis

Overview

Latent Execution for Neural Program Synthesis

This repo provides the code to replicate the experiments in the paper

Xinyun Chen, Dawn Song, Yuandong Tian, Latent Execution for Neural Program Synthesis, in NeurIPS 2021.

Paper [arXiv] [NeurIPS]

Prerequisites

PyTorch

Dataset

Sample Usage

  1. To run our full latent program synthesizer (LaSynth):

python run.py --latent_execution --operation_predictor --decoder_self_attention

  1. To run our program synthesizer without partial program execution (NoPartialExecutor):

python run.py --latent_execution --operation_predictor --decoder_self_attention --no_partial_execution

  1. To run the RobustFill model:

python run.py

  1. To run the Property Signatures model:

python run.py --use_properties

Run experiments

In the following we list some important arguments for experiments:

  • --data_folder: path to the dataset.
  • --model_dir: path to the directory that stores the models.
  • --load_model: path to the pretrained model (optional).
  • --eval: adding this command will enable the evaluation mode; otherwise, the model will be trained by default.
  • --num_epochs: number of training epochs. The default value is 10, but usually 1 epoch is enough for a decent performance.
  • --log_interval LOG_INTERVAL: saving checkpoints every LOG_INTERVAL steps.
  • --latent_execution: Enable the model to learn the latent executor module.
  • --no_partial_execution: Enable the model to learn the latent executor module, but this module is not used by the program synthesizer, and only adds to the training loss.
  • --operation_predictor: Enable the model to learn the operation predictor module.
  • --use_properties: Run the Property Signatures baseline.
  • --iterative_retraining_prog_gen: Decode training programs for iterative retraining.

More details can be found in arguments.py.

Citation

If you use the code in this repo, please cite the following paper:

@inproceedings{chen2021latent,
  title={Latent Execution for Neural Program Synthesis},
  author={Chen, Xinyun and Song, Dawn and Tian, Yuandong},
  booktitle={Advances in Neural Information Processing Systems},
  year={2021}
}

License

This repo is CC-BY-NC licensed, as found in the LICENSE file.

References

[1] Devlin et al., RobustFill: Neural Program Learning under Noisy I/O, ICML 2017.

[2] Odena and Sutton, Learning to Represent Programs with Property Signatures, ICLR 2020.

[3] Chen et al., Execution-Guided Neural Program Synthesis, ICLR 2019.

You might also like...
A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

An example of semantic segmentation using tensorflow in eager execution.

Semantic segmentation using Tensorflow eager execution Requirement Python 2.7+ Tensorflow-gpu OpenCv H5py Scikit-learn Numpy Imgaug Train with eager e

Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

JstDoS - HTTP Protocol Stack Remote Code Execution Vulnerability
JstDoS - HTTP Protocol Stack Remote Code Execution Vulnerability

jstDoS If you are going to skid that, please give credits ! ^^ ¿How works? This

Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

PyTorch implementation of paper
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Code release for NeX: Real-time View Synthesis with Neural Basis Expansion
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

This repository contains a PyTorch implementation of
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

efficient neural audio synthesis in the waveform domain
efficient neural audio synthesis in the waveform domain

neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,

Owner
Xinyun Chen
Ph.D. student, UC Berkeley.
Xinyun Chen
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 4, 2023
A TensorFlow implementation of Neural Program Synthesis from Diverse Demonstration Videos

ViZDoom http://vizdoom.cs.put.edu.pl ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is pri

Hyeonwoo Noh 1 Aug 19, 2020
🔮 Execution time predictions for deep neural network training iterations across different GPUs.

Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training Habitat is a tool that predicts a deep neural network's

Geoffrey Yu 44 Dec 27, 2022
This program uses trial auth token of Azure Cognitive Services to do speech synthesis for you.

??️ aspeak A simple text-to-speech client using azure TTS API(trial). ?? TL;DR: This program uses trial auth token of Azure Cognitive Services to do s

Levi Zim 359 Jan 5, 2023
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022
Request execution of Galaxy SARS-CoV-2 variation analysis workflows on input data you provide.

SARS-CoV-2 processing requests Request execution of Galaxy SARS-CoV-2 variation analysis workflows on input data you provide. Prerequisites This autom

useGalaxy.eu 17 Aug 13, 2022
Bayesian algorithm execution (BAX)

Bayesian Algorithm Execution (BAX) Code for the paper: Bayesian Algorithm Execution: Estimating Computable Properties of Black-box Functions Using Mut

Willie Neiswanger 38 Dec 8, 2022
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (SSLab@Gatech) 581 Dec 30, 2022
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

null 833 Jan 7, 2023
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 6, 2023