BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

Overview

BraTS(Brain Tumour Segmentation) using V-Net

This project is an approach to detect brain tumours using BraTS 2016,2017 dataset.

Description

BraTS is a dataset which provides multimodal 3D brain MRIs annotated by experts. Each Magnetic Resonance Imaging(MRI) scan consists of 4 different modalities(Flair,T1w,t1gd,T2w). Expert annotations are provided in the form of segmentation masks to detect 3 classes of tumour - edema(ED),enhancing tumour(ET),necrotic and non-enhancing tumour(NET/NCR). The dataset is challenging in terms of the complex and heterogeneously-located targets. We use Volumetric Network(V-Net) which is a 3D Fully Convolutional Network(FCN) for segmentation of 3D medical images. We use Dice Loss as the objective function for the present scenario. Future implementation will include Hausdorff Loss for better boundary segmentations.



Fig 1: Brain Tumour Segmentation

Getting Started

Dataset

4D Multimodal MRI dataset

The dataset contains 750 4D volumes of MRI scans(484 for training and 266 for testing). Since the test set is not publicly available we split the train set into train-val-split. We use 400 scans for training and validation and the rest 84 for evaluation. No data augmentations are applied to the data. The data is stored in NIfTI file format(.nii.gz). A 4D tensor of shape (4,150,240,240) is obtained after reading the data where the 1st dimension denotes the modality(Flair,T1w,t1gd,T2w), 2nd dimension denotes the number of slices and the 3rd and 4th dimesion denotes the width and height respectively. We crop each modality to (32,128,128) for computational purpose and stack each modality along the 0th axis. The segmentation masks contain 3 classes - ED,ET,NET/NCR. We resize and stack each class to form a tensor of shape (3,32,128,128).

Experimental Details

Loss functions

We use Dice loss as the objective function to train the model.




Training

We use Adam optimizer for optimizing the objective function. The learning rate is initially set to 0.001 and halved after every 100 epochs. We train the network until 300 epochs and the best weights are saved accordingly. We use NVIDIA Tesla P100 with 16 GB of VRAM to train the model.

Quantative Results

We evaluate the model on the basis of Dice Score Coefficient(DSC) and Intersection over Union(IoU) over three classes (WT+TC+ET).




Qualitative Results



Fig 1: Brain Complete Tumour Segmentation(blue indicates ground truth segmentation and red indicates predicted segmentation)

Statistical Inference



Fig 1: Validation Dice Score Coefficient(DSC)


Fig 2: Validation Dice Loss

Dependencies

  • SimpleITK 2.0.2
  • Pytorch 1.8.0
  • CUDA 10.2
  • TensorBoard 2.5.0

Installing

 pip install SimpleITK
 pip install tensorboard

Execution

 python train.py

train.py contains code for training the model and saving the weights.

loader.py contains code for dataloading and train-test split.

utils.py contains utility functions.

evaluate.py contains code for evaluation.

Acknowledgments

[1] BraTS 3D UNet

[2] VNet

You might also like...
 U-Net Implementation: Convolutional Networks for Biomedical Image Segmentation
U-Net Implementation: Convolutional Networks for Biomedical Image Segmentation" using the Carvana Image Masking Dataset in PyTorch

U-Net Implementation By Christopher Ley This is my interpretation and implementation of the famous paper "U-Net: Convolutional Networks for Biomedical

TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.
TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.

A Brain Tumor Detection and Classification Model built using RESNET50 architecture. The model is also deployed as a web application using Flask framework.

Recovering Brain Structure Network Using Functional Connectivity
Recovering Brain Structure Network Using Functional Connectivity

Recovering-Brain-Structure-Network-Using-Functional-Connectivity Framework: Papers: This repository provides a PyTorch implementation of the models ad

The open source code of SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation.
The open source code of SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation.

SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation(ICPR 2020) Overview This code is for the paper: Spatial Attention U-Net for Retinal V

 Rethinking the U-Net architecture for multimodal biomedical image segmentation
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Code for paper
Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i

A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

A PyTorch implementation of V-Net Vnet is a PyTorch implementation of the paper V-Net: Fully Convolutional Neural Networks for Volumetric Medical Imag

Official and maintained implementation of the paper
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Owner
Rituraj Dutta
Passionate about AI and Deep Learning
Rituraj Dutta
U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

Dennis Bappert 104 Nov 25, 2022
Neural networks applied in recognizing guitar chords using python, AutoML.NET with C# and .NET Core

Chord Recognition Demo application The demo application is written in C# with .NETCore. As of July 9, 2020, the only version available is for windows

Andres Mauricio Rondon Patiño 24 Oct 22, 2022
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Raymond 247 Dec 28, 2022
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

MIC-DKFZ 1.2k Jan 4, 2023
U-2-Net: U Square Net - Modified for paired image training of style transfer

U2-Net: U Square Net Modified for paired image training of style transfer This is an unofficial repo making use of the code which was made available b

Doron Adler 43 Oct 3, 2022
RGBD-Net - This repository contains a pytorch lightning implementation for the 3DV 2021 RGBD-Net paper.

[3DV 2021] We propose a new cascaded architecture for novel view synthesis, called RGBD-Net, which consists of two core components: a hierarchical depth regression network and a depth-aware generator network.

Phong Nguyen Ha 4 May 26, 2022
Realtime segmentation with ENet, the fast and accurate segmentation net.

Enet This is a realtime segmentation net with almost 22 fps on GTX1080 ti, and the model size is very small with only 28M. This repo contains the infe

JinTian 14 Aug 30, 2022
PyTorch Implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding (ORAL, MICCAIW 2021)

Small Lesion Segmentation in Brain MRIs with Subpixel Embedding PyTorch implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedd

null 22 Oct 21, 2022
Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022