U-Net Implementation: Convolutional Networks for Biomedical Image Segmentation" using the Carvana Image Masking Dataset in PyTorch

Overview

U-Net Implementation

By Christopher Ley

This is my interpretation and implementation of the famous paper "U-Net: Convolutional Networks for Biomedical Image Segmentation" using the Carvana Image Masking Dataset in PyTorch

This data set is a Binary Segmentation exercise of ~400 test images of cars from various angles such as those shown here:

Initial implementation for Binary Segmentation

The implementation performs almost as the winners of the competition (Dice: 0.9926 vs 0.99733) after only 5 epoch and we would expect the results to be as good as the winners using this architecture with more training and a little tweaking of the training hyper-parameters.

Here are the scores for training over 5 epochs by running:

(DeepLearning): python3 train.py

Training Results

0%|          | 0/540 [00:00<?, ?it/s]Accuracy: 103298971/467927040 = 22.08%
Dice score: 0.36127230525016785
100%|██████████| 540/540 [05:59<00:00,  1.50it/s, loss=0.0949]
==> Saving Checkpoint to: ./checkpoints/checkpoint_2022-01-06_12:39_epoch_0.pth.tar
Accuracy: 460498379/467927040 = 98.41%
Dice score: 0.9652246236801147
100%|██████████| 540/540 [05:59<00:00,  1.50it/s, loss=0.0469]
==> Saving Checkpoint to: ./checkpoints/checkpoint_2022-01-06_12:48_epoch_1.pth.tar
Accuracy: 461809183/467927040 = 98.69%
Dice score: 0.9711439609527588
100%|██████████| 540/540 [05:56<00:00,  1.51it/s, loss=0.0283]
==> Saving Checkpoint to: ./checkpoints/checkpoint_2022-01-06_12:56_epoch_2.pth.tar
Accuracy: 465675737/467927040 = 99.52%
Dice score: 0.9891990423202515
100%|██████████| 540/540 [06:00<00:00,  1.50it/s, loss=0.0194]
==> Saving Checkpoint to: ./checkpoints/checkpoint_2022-01-06_13:04_epoch_3.pth.tar
Accuracy: 465397979/467927040 = 99.46%
Dice score: 0.9878408908843994
100%|██████████| 540/540 [06:00<00:00,  1.50it/s, loss=0.0142]
==> Saving Checkpoint to: ./checkpoints/checkpoint_2022-01-06_13:12_epoch_4.pth.tar
Accuracy: 466399501/467927040 = 99.67%
Dice score: 0.9926225543022156

And an example of the output vs the ground truth of the validation set, I removed whole makes for the validation set, all 16 angles, the network had never seen this particular make from any angle.

Ground Truth

Prediction

Although limited in scope (binary segmentation for only cars), this architecture performs well with multiclass segmentation, I extended this to apply segmentation to the NYUv2 which is a multiclass objective, with little modification to the above code.

I will clean this up and upload the results and modifications soon!

You might also like...
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.
U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

U-2-Net: U Square Net - Modified for paired image training of style transfer
U-2-Net: U Square Net - Modified for paired image training of style transfer

U2-Net: U Square Net Modified for paired image training of style transfer This is an unofficial repo making use of the code which was made available b

A Closer Look at Invalid Action Masking in Policy Gradient Algorithms

A Closer Look at Invalid Action Masking in Policy Gradient Algorithms This repo contains the source code to reproduce the results in the paper A Close

Code & Data for the Paper "Time Masking for Temporal Language Models", WSDM 2022

Time Masking for Temporal Language Models This repository provides a reference implementation of the paper: Time Masking for Temporal Language Models

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification tasks
Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification tasks

Uniformer - Pytorch Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification ta

Owner
Christopher Ley
Artificial Intelligence Researcher
Christopher Ley
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 5, 2023
MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks.

MVGCN MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks. Developer: Fu Hait

null 13 Dec 1, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 2, 2022
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022
Neural networks applied in recognizing guitar chords using python, AutoML.NET with C# and .NET Core

Chord Recognition Demo application The demo application is written in C# with .NETCore. As of July 9, 2020, the only version available is for windows

Andres Mauricio Rondon Patiño 24 Oct 22, 2022
RGBD-Net - This repository contains a pytorch lightning implementation for the 3DV 2021 RGBD-Net paper.

[3DV 2021] We propose a new cascaded architecture for novel view synthesis, called RGBD-Net, which consists of two core components: a hierarchical depth regression network and a depth-aware generator network.

Phong Nguyen Ha 4 May 26, 2022
This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Orientation independent Möbius CNNs This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of

Maurice Weiler 59 Dec 9, 2022
Pre-trained model, code, and materials from the paper "Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation" (MICCAI 2019).

Adaptive Segmentation Mask Attack This repository contains the implementation of the Adaptive Segmentation Mask Attack (ASMA), a targeted adversarial

Utku Ozbulak 53 Jul 4, 2022
Code for "Multi-Compound Transformer for Accurate Biomedical Image Segmentation"

News The code of MCTrans has been released. if you are interested in contributing to the standardization of the medical image analysis community, plea

null 97 Jan 5, 2023
Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation The skip connections in U-Net pass features from the levels of enc

Boheng Cao 1 Dec 29, 2021