FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data

Overview

FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data

Flexible EM-Inspired Discriminant Analysis is a robust supervised classification algorithm that performs well in noisy and contaminated datasets.

Authors

Andrew Wang, University of Cambridge, Cambridge, UK Pierre Houdouin, CentraleSupélec, Paris, France

Instllation

pip install -i https://test.pypi.org/simple/ femda

Get started

>>> from sklearn.datasets import load_iris
>>> from femda import FEMDA
>>> X, y = load_iris(return_X_y=True)
>>> clf = FEMDA()
>>> clf.fit(X, y)
FEMDA()
>>> clf.score(X, y)
0.9666666666666667

Using a specific dataset...

>> FEMDA().fit(X_train, y_train).score(X_test, y_test) ...">
>>> import femda.experiments.preprocessing as pre
>>> X_train, y_train, X_test, y_test = pre.statlog(r"root\datasets\\")
>>> FEMDA().fit(X_train, y_train).score(X_test, y_test)
...

Using a sklearn.pipeline.Pipeline...

>>> from sklearn.datasets import load_digits
>>> from sklearn.pipeline import make_pipeline
>>> from sklearn.decomposition import PCA
>>> X, y = load_digits(return_X_y=True)
>>> pipe = make_pipeline(PCA(n_components=5), FEMDA()).fit(X, y)
>>> pipe.predict(X)
...

Run all experiments presented in the paper

>>> from femda.experiments import run_experiments()
>>> run_experiments()
...

See demo.ipynb for more.

Abstract

Linear and Quadraic Discriminant Analysis are well-known classical methods but suffer heavily from non-Gaussian class distributions and are very non-robust in contaminated datasets. In this paper, we present a new discriminant analysis style classification algorithm that directly models noise and diverse shapes which can deal with a wide range of datasets.

Each data point is modelled by its own arbitrary Elliptically Symmetrical (ES) distribution and its own arbitrary scale parameter, modelling directly very heterogeneous, non-i.i.d datasets. We show that maximum-likelihood parameter estimation and classification are simple and fast under this model.

We highlight the flexibility of the model to a wide range of Elliptically Symmetrical distribution shapes and varying levels of contamination in synthetic datasets. Then, we show that our algorithm outperforms other robust methods on contaminated datasets from Computer Vision and NLP.

You might also like...
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference
HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference

HNECV This repository provides a reference implementation of HNECV as described in the paper: HNECV: Heterogeneous Network Embedding via Cloud model a

Code for KDD'20
Code for KDD'20 "An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph"

Heterogeneous INteract and aggreGatE (GraphHINGE) This is a pytorch implementation of GraphHINGE model. This is the experiment code in the following w

A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.

Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

Pytorch implementation of VAEs for heterogeneous likelihoods.

Heterogeneous VAEs Beware: This repository is under construction 🛠️ Pytorch implementation of different VAE models to model heterogeneous data. Here,

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling

RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1

Owner
null
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Facebook Research 75 Dec 19, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

null 14 Nov 28, 2022
LBK 35 Dec 26, 2022
Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centr

Esteban Vilca 3 Dec 1, 2022
The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Watermark-Robustness-Toolbox - Official PyTorch Implementation This repository contains the official PyTorch implementation of the following paper to

null 49 Dec 19, 2022
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

null 1 Jun 2, 2022
code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

On Robust Prefix-Tuning for Text Classification Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adap

Zonghan Yang 12 Nov 30, 2022
MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.

Documentation | FAQ | Release Notes | Roadmap | MACE Model Zoo | Demo | Join Us | 中文 Mobile AI Compute Engine (or MACE for short) is a deep learning i

Xiaomi 4.7k Dec 29, 2022
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 3, 2022
DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

null 52 Dec 30, 2022