pcnaDeep-napari
A customized interface for single cell track visualisation based on pcnaDeep and napari.
👀
Under construction
You can get test image data from pcnaDeep demo data.
TODO: usage tutorials.
Requirements
pcnaDeep
napari>=0.4.12
Usage
-
If you have the composite image:
# image: composite image, PCNA fluorescence the first channel, bright field the last. # mask: PCNAdeep output binary objrct mask. # track: PCNAdeep output tracked object table. python launch.py --image data/MCF10A_demo_comp.tif --mask data/MCF10A_demo_mask.tif --track data/MCF10A_demo_tracks_refined.csv
-
Otherwise, use raw
uint16
images of the above two channels with automatic pre-processing steps.# sat: pixel saturation for rescaling PCNA and bright field. # gamma: gamma factor for processing PCNA. python launch.py --bf data/MCF10A_demo_bf.tif --pcna data/MCF10A_demo_pcna.tif --mask data/MCF10A_demo_mask.tif --track data/MCF10A_demo_tracks_refined.csv --sat 1 --gamma 1
This is not a napari plugin and you must launch the interface through the launch.py
script.
Licence
pcnaDeep-napari is released under the Apache 2.0 license.