PyTorch implementation of PNASNet-5 on ImageNet

Overview

PNASNet.pytorch

PyTorch implementation of PNASNet-5. Specifically, PyTorch code from this repository is adapted to completely match both my implemetation and the official implementation of PNASNet-5, both written in TensorFlow. This complete match allows the pretrained TF model to be exactly converted to PyTorch: see convert.py.

If you use the code, please cite:

@inproceedings{liu2018progressive,
  author    = {Chenxi Liu and
               Barret Zoph and
               Maxim Neumann and
               Jonathon Shlens and
               Wei Hua and
               Li{-}Jia Li and
               Li Fei{-}Fei and
               Alan L. Yuille and
               Jonathan Huang and
               Kevin Murphy},
  title     = {Progressive Neural Architecture Search},
  booktitle = {European Conference on Computer Vision},
  year      = {2018}
}

Requirements

  • TensorFlow 1.8.0 (for image preprocessing)
  • PyTorch 0.4.0
  • torchvision 0.2.1

Data and Model Preparation

  • Download the ImageNet validation set and move images to labeled subfolders. To do the latter, you can use this script. Make sure the folder val is under data/.
  • Download PNASNet.TF and follow its README to download the PNASNet-5_Large_331 pretrained model.
  • Convert TensorFlow model to PyTorch model:
python convert.py

Notes on Model Conversion

  • In both TensorFlow implementations, net[0] means prev and net[1] means prev_prev. However, in the PyTorch implementation, states[0] means prev_prev and states[1] means prev. I followed the PyTorch implemetation in this repository. This is why the 0 and 1 in PNASCell specification are reversed.
  • The default value of eps in BatchNorm layers is 1e-3 in TensorFlow and 1e-5 in PyTorch. I changed all BatchNorm eps values to 1e-3 (see operations.py) to exactly match the TensorFlow pretrained model.
  • The TensorFlow pretrained model uses tf.image.resize_bilinear to resize the image (see utils.py). I cannot find a python function that exactly matches this function's behavior (also see this thread and this post on this topic), so currently in main.py I call TensorFlow to do the image preprocessing, in order to guarantee both models have the identical input.
  • When converting the model from TensorFlow to PyTorch (i.e. convert.py), I use input image size of 323 instead of 331. This is because the 'SAME' padding in TensorFlow may differ from padding in PyTorch in some layers (see this link; basically TF may only pad 1 right and bottom, whereas PyTorch always pads 1 for all four margins). However, they behave exactly the same when image size is 323: conv0 does not have padding, so feature size becomes 161, then 81, 41, etc.
  • The exact conversion when image size is 323 is also corroborated by the following table:
Image Size Official TensorFlow Model Converted PyTorch Model
(331, 331) (0.829, 0.962) (0.828, 0.961)
(323, 323) (0.827, 0.961) (0.827, 0.961)

Usage

python main.py

The last printed line should read:

Test: [50000/50000]	Prec@1 0.828	Prec@5 0.961
Comments
  • Cells not repeated x N at each layer ??

    Cells not repeated x N at each layer ??

    Hi, thanks for posting this code. Maybe I am missing something but it seems that at each layer the cells are not repeated N times as in the PNAS paper?

    opened by ngBroken 6
  • Would you mind to provide the CIFAR-10 model?

    Would you mind to provide the CIFAR-10 model?

    Would you mind to provide the CIFAR-10 model? I use the provided architecture https://github.com/chenxi116/PNASNet.pytorch/blob/master/genotypes.py#L5 and the code from https://github.com/quark0/darts/blob/master/cnn/model.py#L111, but obtain the model parameter size of 4.2 MB (I use initial channel of 48 and layers of 11). Is there anything wrong?

    opened by D-X-Y 4
  • Could you add a LICENSE.md?

    Could you add a LICENSE.md?

    @chenxi116 This repository looks very useful thanks for putting it up!

    Would you mind adding a license to this? Without a license it is impossible to legally clone or run this code. If you're not sure and would like a suggestion the Apache 2.0 license is a good option. A quick summary of apache 2.0 is available at tl;dr legal. This is the same license used by TensorFlow. Here is the license text:

    Apache License, Version 2.0 Apache License Version 2.0, January 2004 http://www.apache.org/licenses/
    
    TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
    
    1. Definitions.
    
    "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document.
    
    "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.
    
    "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.
    
    "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.
    
    "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files.
    
    "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.
    
    "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below).
    
    "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.
    
    "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution."
    
    "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work.
    
    2. Grant of Copyright License.
    
    Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.
    
    3. Grant of Patent License.
    
    Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed.
    
    4. Redistribution.
    
    You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:
    
    You must give any other recipients of the Work or Derivative Works a copy of this License; and You must cause any modified files to carry prominent notices stating that You changed the files; and You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License.
    
    5. Submission of Contributions.
    
    Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions.
    
    6. Trademarks.
    
    This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file.
    
    7. Disclaimer of Warranty.
    
    Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License.
    
    8. Limitation of Liability.
    
    In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages.
    
    9. Accepting Warranty or Additional Liability.
    
    While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability.
    
    END OF TERMS AND CONDITIONS
    
    APPENDIX: How to apply the Apache License to your work
    
    To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives.
    
    Copyright [yyyy] [name of copyright owner]
    
    Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
    
    http://www.apache.org/licenses/LICENSE-2.0
    
    Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
    
    
    opened by ahundt 1
  • Problems in Converting PNASNet_mobile to pytorch

    Problems in Converting PNASNet_mobile to pytorch

    Hi, I just want to use your code to convert PNASNet_mobile models to PyTorch.

    After modifiing your code with both PNASNet.pytorch and PNASNet.TF,

    I find that the accuracy is slow on converted models with PNASNet.pytorch Test: [50000/50000] Prec@1 0.710 Prec@5 0.901 But In PNASNet.TF, the accuracy is 74.2

    The shape and dict test is pass. But the Check 2 failed.

    Could you give me some hints on converting the PNASNet-mobile models?

    Thanks

    opened by tzzcl 1
  • How to transfer the code to other dataset?

    How to transfer the code to other dataset?

    I want to use your code to design an architecture based on my own dataset. Could you tell me which part in your code I need to modify? Thanks very much!

    opened by marsggbo 2
Owner
Chenxi Liu
Ph.D. Student in Computer Science
Chenxi Liu
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

蒋子航 383 Dec 27, 2022
Official Pytorch Implementation of: "ImageNet-21K Pretraining for the Masses"(2021) paper

ImageNet-21K Pretraining for the Masses Paper | Pretrained models Official PyTorch Implementation Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, Lihi Zelni

null 574 Jan 2, 2023
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

null 32 Dec 26, 2022
(ImageNet pretrained models) The official pytorch implemention of the TPAMI paper "Res2Net: A New Multi-scale Backbone Architecture"

Res2Net The official pytorch implemention of the paper "Res2Net: A New Multi-scale Backbone Architecture" Our paper is accepted by IEEE Transactions o

Res2Net Applications 928 Dec 29, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

Tom 50 Dec 16, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning This is a small repo illustrating how to use WebDataset on ImageNet. usi

null 50 Dec 16, 2022
DenseNet Implementation in Keras with ImageNet Pretrained Models

DenseNet-Keras with ImageNet Pretrained Models This is an Keras implementation of DenseNet with ImageNet pretrained weights. The weights are converted

Felix Yu 568 Oct 31, 2022
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2

VITA 156 Nov 28, 2022
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

null 35 Oct 4, 2022
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

null 51 Dec 1, 2022
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛

transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 安全AI挑战者计划第六期赛道2:ImageNet无限制对抗攻击 介绍 : 深度神经网络已经在各种视觉识别问题上取得了最先进的性能。

null 25 Dec 8, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022
Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training.

Updates (2020/06/21) Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training. Pyr

null 1.3k Jan 4, 2023
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

NAVER 23 Oct 9, 2022
Code for Active Learning at The ImageNet Scale.

Code for Active Learning at The ImageNet Scale. This repository implements many popular active learning algorithms and allows training with torch's DDP.

Zeyad Emam 47 Dec 12, 2022
A new test set for ImageNet

ImageNetV2 The ImageNetV2 dataset contains new test data for the ImageNet benchmark. This repository provides associated code for assembling and worki

null 186 Dec 18, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 4, 2023
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

null 8 Nov 1, 2022