Incorporating User Micro-behaviors and Item Knowledge 59 60 3 into Multi-task Learning for Session-based Recommendation

Overview

MKM-SR

Incorporating User Micro-behaviors and Item Knowledge into Multi-task Learning for Session-based Recommendation

Paper data and code

This is the code for the SIGIR2020 Paper:Incorporating User Micro-behaviors and Item Knowledge into Multi-task Learning for Session-based Recommendation. We have implemented our methods in pytorch.

Here are two datasets we used in our paper. After download the datasets, you can put them in the folder: data/

We have also inclueded some baseline codes in this paper.

Usage

You need to run the file data/data_prepare.py first to preprocess the data.

For example: cd data; python data_prepare.py --dataset=demo

usage: prepare.py [--dataset Demo][--remove_new_item]
optional arguments:
--dataset DATASET_PATH dataset name: Demo/Jdata/KKbox

Then you can run the file main.py to train the model.

usage: main.py 
optional arguments:
  --dataset             dataset name
  --batchSize           input batch size
  --hiddenSize          hidden state size
  --epoch EPOCH         the number of epochs to train for
  --lr LR               learning rate
  --l2 L2               l2 penalty
  --step STEP           gnn propogation steps
  --patience PATIENCE   the number of epoch to wait before early stop
  --remove_new_items    whether keep new item
  --mode                model mode,there we only keep MKM_SR,if you need other mode, you can contact with us, or use the ablation version.
  

You might also like...
Plex-recommender - Get movie recommendations based on your current PleX library

plex-recommender Description: Get movie/tv recommendations based on your current

Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

A Python scikit for building and analyzing recommender systems

Overview Surprise is a Python scikit for building and analyzing recommender systems that deal with explicit rating data. Surprise was designed with th

E-Commerce recommender demo with real-time data and a graph database
E-Commerce recommender demo with real-time data and a graph database

🔍 E-Commerce recommender demo 🔍 This is a simple stream setup that uses Memgraph to ingest real-time data from a simulated online store. Data is str

Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Session-aware BERT4Rec Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 shor

Implementation of "Debiasing Item-to-Item Recommendations With Small Annotated Datasets" (RecSys '20)

Debiasing Item-to-Item Recommendations With Small Annotated Datasets This is the code for our RecSys '20 paper. Other materials can be found here: Ful

Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation'

OD-Rec Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation' Paper, saved teacher models and Andro

FastAPI Server Session is a dependency-based extension for FastAPI that adds support for server-sided session management

FastAPI Server-sided Session FastAPI Server Session is a dependency-based extension for FastAPI that adds support for server-sided session management.

Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Reformulation-Aware-Metrics Introduction This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper. Chen, Jia, et a

Session-based Recommendation, CoHHN, price preferences, interest preferences, Heterogeneous Hypergraph, Co-guided Learning, SIGIR2022

This is our implementation for the paper: Price DOES Matter! Modeling Price and Interest Preferences in Session-based Recommendation Xiaokun Zhang, Bo

ANKIT-OS/TG-SESSION-HACK-BOT: A Special Repository.Telegram Bot Which Can Hack The Victim By Using That Victim Session
ANKIT-OS/TG-SESSION-HACK-BOT: A Special Repository.Telegram Bot Which Can Hack The Victim By Using That Victim Session

🔰 ᵀᴱᴸᴱᴳᴿᴬᴹ ᴴᴬᶜᴷ ᴮᴼᵀ 🔰 The owner would not be responsible for any kind of bans due to the bot. • ⚡ INSTALLING ⚡ • • 🛠️ Lᴀɴɢᴜᴀɢᴇs Aɴᴅ Tᴏᴏʟs 🔰 • If

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Product-based-recommendation-system - A product based recommendation system which uses Machine learning algorithm such as KNN and cosine similarity [SIGIR22] Official PyTorch implementation for
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Official public repository of paper
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

A task scheduler with task scheduling, timing and task completion time tracking functions

A task scheduler with task scheduling, timing and task completion time tracking functions. Could be helpful for time management in daily life.

Comments
  • Qusetion about your project

    Qusetion about your project

    Why don't you take responsibility for the project?there're so many problems of your project!!!especially,your code is a description of your paper!!! If we can't reproduce it,can we reasonably think that your paper is a faker?

    opened by kaileby 1
  • JData is not accessible since the competition is closed

    JData is not accessible since the competition is closed

    Hi, I would like to download the JData, but it seems that it is not accessible since the competition has closed. Is there any other way that I could download it?

    Thank you.

    opened by rowedenny 1
  • Data preparation functions aren't available

    Data preparation functions aren't available

    Hi - I wanted to reproduce your experiments from the paper, and understand the process.

    I can't seem to find the code for data_prepare.py or prepare.py as mentioned in the README. Only the data folder is visible. Could you add those files?

    Thank you!

    opened by trisongz 4
Owner
ciecus
enjoy machine learning
ciecus
A TensorFlow recommendation algorithm and framework in Python.

TensorRec A TensorFlow recommendation algorithm and framework in Python. NOTE: TensorRec is not under active development TensorRec will not be receivi

James Kirk 1.2k Jan 4, 2023
Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems.

Persine, the Persona Engine Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems. It has a simple interface a

Jonathan Soma 87 Nov 29, 2022
An open source movie recommendation WebApp build by movie buffs and mathematicians that uses cosine similarity on the backend.

Movie Pundit Find your next flick by asking the (almost) all-knowing Movie Pundit Jump to Project Source » View Demo · Report Bug · Request Feature Ta

Kapil Pramod Deshmukh 8 May 28, 2022
A Python implementation of LightFM, a hybrid recommendation algorithm.

LightFM Build status Linux OSX (OpenMP disabled) Windows (OpenMP disabled) LightFM is a Python implementation of a number of popular recommendation al

Lyst 4.2k Jan 2, 2023
ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms

ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms, including but not limited to click-through-rate (CTR) prediction, learning-to-ranking (LTR), and Matrix/Tensor Embedding. The project objective is to develop a ecosystem to experiment, share, reproduce, and deploy in real world in a smooth and easy way (Hope it can be done).

LI, Wai Yin 90 Oct 8, 2022
A framework for large scale recommendation algorithms.

A framework for large scale recommendation algorithms.

Alibaba Group - PAI 880 Jan 3, 2023
Recommendation System to recommend top books from the dataset

recommendersystem Recommendation System to recommend top books from the dataset Introduction The recom.py is the main program code. The dataset is als

Vishal karur 1 Nov 15, 2021
Books Recommendation With Python

Books-Recommendation Business Problem During the last few decades, with the rise

Çağrı Karadeniz 7 Mar 12, 2022
Bert4rec for news Recommendation

News-Recommendation-system-using-Bert4Rec-model Bert4rec for news Recommendation

saran pandian 2 Feb 4, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and newly state-of-the-art recommendation models are implemented. QRec has a lightweight architecture and provides user-friendly interfaces. It can facilitate model implementation and evaluation.

Yu 1.4k Dec 27, 2022