Multi-objective constrained optimization for energy applications via tree ensembles

Overview

MOO_TREES

This repository contains scripts for the multi-objective extension of ENTMOOT featured in: .

Please cite this work as:

@article{thebelt2021mootrees,
  title={{Multi-objective constrained optimization for energy applications via tree ensembles}},
  author={Thebelt, Alexander and Tsay, Calvin and Lee, Robert M and Sudermann-Merx, Nathan and Walz, David and Tranter, Tom and Misener, Ruth},
  journal={Applied Energy},
  volume={306},
  pages={118061},
  year={2022},
  publisher={Elsevier}
}

Dependencies

  • python >= 3.7.4
  • numpy >= 1.20.3
  • scipy >= 1.6.3
  • gurobipy >= 9.1.2
  • pyaml >= 20.4.0
  • scikit-learn >= 0.24.2
  • lightgbm >= 3.2.1
  • pybamm >= 0.4.0

For PyBaMM please install this branch https://github.com/pybamm-team/PyBaMM/tree/issue-1575-discharged_energy, which allows direct access to the discarged_energy variable. The following command will install the right branch:

pip install git+https://github.com/pybamm-team/PyBaMM.git@issue-1575-discharged_energy

Installing Gurobi

The solver software Gurobi is required to run the examples. Gurobi is a commercial mathematical optimization solver and free of charge for academic research. It is available on Linux, Windows and Mac OS.

Please follow the instructions to obtain a free academic license. Once Gurobi is installed on your system, follow the steps to setup the Python interface gurobipy.

Running Experiments

This repo includes the two benchmark problems: (i) windfarm layout optimization which was adapted from here, and (ii) battery optimization which uses PyBaMM to simulate different configurations.

To run experiments please first execute create_init to generate all initial points for 25 different random seeds for both benchmarks which will be stored in moo_results/bb_init.json. A directory moo_results will be created if it doesn't exist already.

Afterwards, you can call main.py to run experiments:

e.g. python main.py Windfarm 101 10 runs the windfarm benchmark for random seed 101 and evaluation budget 10.

Authors

License

This repository is released under the BSD 3-Clause License. Please refer to the LICENSE file for details.

Acknowledgements

This work was supported by BASF SE, Ludwigshafen am Rhein, EPSRC Research Fellowships to RM (EP/P016871/1) and CT (EP/T001577/1), and an Imperial College Research Fellowship to CT. TT acknowledges funding from the EPSRC Faraday Institution Multiscale Modelling Project (EP/S003053/1, FIRG003).

You might also like...
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

Locally Constrained Self-Attentive Sequential Recommendation
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Official PyTorch implementation of the paper
Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.

Deep Constrained Least Squares for Blind Image Super-Resolution [Paper] This is the official implementation of 'Deep Constrained Least Squares for Bli

Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

Racing line optimization algorithm in python that uses Particle Swarm Optimization.
Racing line optimization algorithm in python that uses Particle Swarm Optimization.

Racing Line Optimization with PSO This repository contains a racing line optimization algorithm in python that uses Particle Swarm Optimization. Requi

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Official implementation of
Official implementation of "A Unified Objective for Novel Class Discovery", ICCV2021 (Oral)

A Unified Objective for Novel Class Discovery This is the official repository for the paper: A Unified Objective for Novel Class Discovery Enrico Fini

Owner
C⚙G - Imperial College London
Computational Optimisation Group @ Imperial College London
C⚙G - Imperial College London
Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Debabrata Mahapatra 40 Dec 24, 2022
Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations

Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations Requirements The code is implemented in Python and requires

null 1 Nov 3, 2021
PyTorch implementation of Constrained Policy Optimization

PyTorch implementation of Constrained Policy Optimization (CPO) This repository has a simple to understand and use implementation of CPO in PyTorch. A

Sapana Chaudhary 25 Dec 8, 2022
A semismooth Newton method for elliptic PDE-constrained optimization

sNewton4PDEOpt The Python module implements a semismooth Newton method for solving finite-element discretizations of the strongly convex, linear ellip

null 2 Dec 8, 2022
Neural Oblivious Decision Ensembles

Neural Oblivious Decision Ensembles A supplementary code for anonymous ICLR 2020 submission. What does it do? It learns deep ensembles of oblivious di

null 25 Sep 21, 2022
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

MIT Graphics Group 65 Jan 7, 2023
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as

Facebook Research 85 Jan 2, 2023
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 3, 2023
CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energy Management, 2020, PikaPika team

Citylearn Challenge This is the PyTorch implementation for PikaPika team, CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energ

bigAIdream projects 10 Oct 10, 2022