TraSw for FairMOT - A Single-Target Attack example (Attack ID: 19; Screener ID: 24):

Overview

TraSw for FairMOT

  • A Single-Target Attack example (Attack ID: 19; Screener ID: 24):
Fig.1 Original Fig.2 Attacked
By perturbing only two frames in this example video, we can exchange the 19th ID and the 24th ID completely. Starting from frame 592, the 19th and 24th IDs can keep the exchange without noise.

TraSw: Tracklet-Switch Adversarial Attacks against Multi-Object Tracking,
Delv Lin, Qi Chen, Chengyu Zhou, Kun He,
arXiv 2111.08954

Related Works

Abstract

Benefiting from the development of Deep Neural Networks, Multi-Object Tracking (MOT) has achieved aggressive progress. Currently, the real-time Joint-Detection-Tracking (JDT) based MOT trackers gain increasing attention and derive many excellent models. However, the robustness of JDT trackers is rarely studied, and it is challenging to attack the MOT system since its mature association algorithms are designed to be robust against errors during tracking. In this work, we analyze the weakness of JDT trackers and propose a novel adversarial attack method, called Tracklet-Switch (TraSw), against the complete tracking pipeline of MOT. Specifically, a push-pull loss and a center leaping optimization are designed to generate adversarial examples for both re-ID feature and object detection. TraSw can fool the tracker to fail to track the targets in the subsequent frames by attacking very few frames. We evaluate our method on the advanced deep trackers (i.e., FairMOT, JDE, ByteTrack) using the MOT-Challenge datasets (i.e., 2DMOT15, MOT17, and MOT20). Experiments show that TraSw can achieve a high success rate of over 95% by attacking only five frames on average for the single-target attack and a reasonably high success rate of over 80% for the multiple-target attack.

Attack Performance

Single-Target Attack Results on MOT challenge test set

Dataset Suc. Rate Avg. Frames Avg. L2 Distance
2DMOT15 95.37% 4.67 3.55
MOT17 96.35% 5.61 3.23
MOT20 98.89% 4.12 3.12

Multiple-Target Attack Results on MOT challenge test set

Dataset Suc. Rate Avg. Frames (Proportion) Avg. L2 Distance
2DMOT15 81.95% 35.06% 2.79
MOT17 82.01% 38.85% 2.71
MOT20 82.02% 54.35% 3.28

Installation

  • same as FairMOT

  • Clone this repo, and we'll call the directory that you cloned as ${FA_ROOT}

  • Install dependencies. We use python 3.7 and pytorch >= 1.2.0

  • conda create -n FA
    conda activate FA
    conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch
    cd ${FA_ROOT}
    pip install -r requirements.txt
    cd src/lib/models/networks/DCNv2 sh make.sh
  • We use DCNv2 in our backbone network and more details can be found in their repo.

  • In order to run the code for demos, you also need to install ffmpeg.

Data preparation

  • We only use the same test data as FairMOT.

  • 2DMOT15, MOT17 and MOT20 can be downloaded from the official webpage of MOT-Challenge. After downloading, you should prepare the data in the following structure:

    ${DATA_DIR}
        ├── MOT15
        │   └── images
        │       ├── test
        │       └── train
        ├── MOT17
        │   └── images
        │       ├── test
        │       └── train
        └── MOT20
            └── images
                ├── test
                └── train
    

Target Model

Tracking without Attack

  • tracking on original videos of 2DMOT15, MOT17, and MOT20
cd src
python track.py mot --test_mot15 True --load_model all_dla34.pth --conf_thres 0.3 --data_dir ${DATA_DIR} --output_dir ${OUTPUT_DIR}
python track.py mot --test_mot17 True --load_model all_dla34.pth --conf_thres 0.4 --data_dir ${DATA_DIR} --output_dir ${OUTPUT_DIR}
python track.py mot --test_mot20 True --load_model all_dla34.pth --conf_thres 0.3 --data_dir ${DATA_DIR} --output_dir ${OUTPUT_DIR}

Attack

Single-Target Attack

  • attack all attackable objects separately in videos in parallel (may require a lot of memory).
cd src
python track.py mot --test_mot15 True --load_model all_dla34.pth --conf_thres 0.3 --data_dir ${DATA_DIR} --output_dir ${OUTPUT_DIR} --attack single --attack_id -1
python track.py mot --test_mot17 True --load_model all_dla34.pth --conf_thres 0.4 --data_dir ${DATA_DIR} --output_dir ${OUTPUT_DIR} --attack single --attack_id -1
python track.py mot --test_mot20 True --load_model all_dla34.pth --conf_thres 0.3 --data_dir ${DATA_DIR} --output_dir ${OUTPUT_DIR} --attack single --attack_id -1
  • attack a specific object in a specific video (require to set specific video in src/track.py).
cd src
python track.py mot --test_mot15 True --load_model all_dla34.pth --conf_thres 0.3 --data_dir ${DATA_DIR} --output_dir ${OUTPUT_DIR} --attack single --attack_id ${a specific id in origial tracklets}
python track.py mot --test_mot17 True --load_model all_dla34.pth --conf_thres 0.4 --data_dir ${DATA_DIR} --output_dir ${OUTPUT_DIR} --attack single --attack_id ${a specific id in origial tracklets}
python track.py mot --test_mot20 True --load_model all_dla34.pth --conf_thres 0.3 --data_dir ${DATA_DIR} --output_dir ${OUTPUT_DIR} --attack single --attack_id ${a specific id in origial tracklets}

Multiple-Targets Attack

  • attack all attackable objects in videos.
cd src
python track.py mot --test_mot15 True --load_model all_dla34.pth --conf_thres 0.3 --data_dir ${DATA_DIR} --output_dir ${OUTPUT_DIR} --attack multiple
python track.py mot --test_mot17 True --load_model all_dla34.pth --conf_thres 0.4 --data_dir ${DATA_DIR} --output_dir ${OUTPUT_DIR} --attack multiple
python track.py mot --test_mot20 True --load_model all_dla34.pth --conf_thres 0.3 --data_dir ${DATA_DIR} --output_dir ${OUTPUT_DIR} --attack multiple

Acknowledgement

This source code is based on FairMOT. Thanks for their wonderful works.

Citation

@misc{lin2021trasw,
      title={TraSw: Tracklet-Switch Adversarial Attacks against Multi-Object Tracking}, 
      author={Delv Lin and Qi Chen and Chengyu Zhou and Kun He},
      year={2021},
      eprint={2111.08954},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
You might also like...
Python and C++ implementation of
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

Generate Contextual Directory Wordlist For Target Org

PathPermutor Generate Contextual Directory Wordlist For Target Org This script generates contextual wordlist for any target org based on the set of UR

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Implementing yolov4 target detection and tracking based on nao robot
Implementing yolov4 target detection and tracking based on nao robot

Implementing yolov4 target detection and tracking based on nao robot

Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2

CoaDTI Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2 Abstract Environment The test was conducted i

The code for SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network.

SAG-DTA The code is the implementation for the paper 'SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network'. Requirements py

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift

This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).

Comments
  • Confusions about the code

    Confusions about the code

    Thanks for your contribution! When I go through the code, I feel confused about the following: In Line 457 in track.py (https://github.com/DerryHub/FairMOT-attack/blob/main/src/track.py#L457), why are tracklets who satisfy 'suc_frequency_ids[attack_id] > 20' (which means tracklets exceed the maxima attack frames) added to 'suc_attacked_ids', while I suspect 'suc_attacked_ids' is used to record successfully attacked tracklets. Hope to get your help. Thanks a lot!

    opened by infZhou 4
  • The MOT benchmark test haven't labels, how compute the loss?

    The MOT benchmark test haven't labels, how compute the loss?

    Hello, i'm studing adversarial sample in multi-object tracking. In your paper, using loss function to generate adversarial video, but the test lable can't get, so how do you did it? Hope to get your help.

    opened by loveZzq 2
Owner
Derry Lin
Derry Lin
FairMOT for Multi-Class MOT using YOLOX as Detector

FairMOT-X Project Overview FairMOT-X is a multi-class multi object tracker, which has been tailored for training on the BDD100K MOT Dataset. It makes

Jonathan Tan 33 Dec 28, 2022
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

null 51 Dec 1, 2022
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛

transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 安全AI挑战者计划第六期赛道2:ImageNet无限制对抗攻击 介绍 : 深度神经网络已经在各种视觉识别问题上取得了最先进的性能。

null 25 Dec 8, 2022
Neon-erc20-example - Example of creating SPL token and wrapping it with ERC20 interface in Neon EVM

Example of wrapping SPL token by ERC2-20 interface in Neon Requirements Install

null 7 Mar 28, 2022
Example-custom-ml-block-keras - Custom Keras ML block example for Edge Impulse

Custom Keras ML block example for Edge Impulse This repository is an example on

Edge Impulse 8 Nov 2, 2022
Python-kafka-reset-consumergroup-offset-example - Python Kafka reset consumergroup offset example

Python Kafka reset consumergroup offset example This is a simple example of how

Willi Carlsen 1 Feb 16, 2022
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag

Shuchang Tao 18 Nov 21, 2022
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementatio

Microsoft 247 Dec 25, 2022
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Evgeny 79 Dec 19, 2022
Red Team tool for exfiltrating files from a target's Google Drive that you have access to, via Google's API.

GD-Thief Red Team tool for exfiltrating files from a target's Google Drive that you(the attacker) has access to, via the Google Drive API. This includ

Antonio Piazza 39 Dec 27, 2022