Byzantine-robust decentralized learning via self-centered clipping

Overview

Byzantine-robust decentralized learning via self-centered clipping

In this paper, we study the challenging task of Byzantine-robust decentralized training on arbitrary communication graphs. Unlike federated learning where workers communicate through a server, workers in the decentralized environment can only talk to their neighbors, making it harder to reach consensus. We identify a novel dissensus attack in which few malicious nodes can take advantage of information bottlenecks in the topology to poison the collaboration. To address these issues, we propose a Self-Centered Clipping (SSClip) algorithm for Byzantine-robust consensus and optimization, which is the first to provably converge to a $O(\delta_{\max}\zeta^2/\gamma^2)$ neighborhood of the stationary point for non-convex objectives under standard assumptions. Finally, we demonstrate the encouraging empirical performance of SSClip under a large number of attacks.

Table of contents

Code organization

The structure of the repository is as follows:

  • codes/
    • Source code.
  • outputs/
    • Store the output of the launcher scripts.
  • consensus.ipynb: Study the error of aggregators to the average consensus under dissensus attack.
    • This notebook generates Fig. 3 in the main text and Fig. 8 in the appendix.
  • dumbbell.py: Study how topology + heterogeneity influence on the aggregators.
  • dumbbell_improvement.py: Study how to help aggregators to address topology + heterogeneity influence.
  • dumbbell.ipynb: Plot the results of dumbbell.py and dumbbell_improvement.py.
    • Generate Fig. 4 in the main text.
  • optimization_delta.py: Fix p, zeta^2 and varying delta of dissensus attack for SCClip aggregator.
    • Generate Fig. 5 in the main text.
  • honest_majority.py: Study the influence of honest majority in the text.
    • Generate Fig. 6 in the main text.

Reproduction

To reproduce the results in the paper, do the following steps

  1. Add codes/ to environment variable PYTHONPATH
  2. Install the dependencies: pip install -r requirements.txt
  3. Run bash run.sh and select option 2 to 9 to generate the code.
  4. The output will be saved to the corresponding folders under outputs

Note that if the GPU memory is small (e.g. less than 16 GB), then running the previous commands may raise insufficient exception. In this case, one can decrease the level parallelism in the script by changing the order of loops and reduce the number of parallel processes.

License

This repo is covered under The MIT License.

Reference

TODO

You might also like...
[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction
[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction

SADRNet Paper link: SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction Requirements python

Robust Self-augmentation for NER with Meta-reweighting

Robust Self-augmentation for NER with Meta-reweighting

RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection
RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection

RODD Official Implementation of 2022 CVPRW Paper RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection Introduction: Recent studie

[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

Code for C2-Matching (CVPR2021). Paper: Robust Reference-based Super-Resolution via C2-Matching.
Code for C2-Matching (CVPR2021). Paper: Robust Reference-based Super-Resolution via C2-Matching.

C2-Matching (CVPR2021) This repository contains the implementation of the following paper: Robust Reference-based Super-Resolution via C2-Matching Yum

Code for the CVPR 2021 paper: Understanding Failures of Deep Networks via Robust Feature Extraction
Code for the CVPR 2021 paper: Understanding Failures of Deep Networks via Robust Feature Extraction

Welcome to Barlow Barlow is a tool for identifying the failure modes for a given neural network. To achieve this, Barlow first creates a group of imag

Code release for our paper,
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

Code and models for ICCV2021 paper
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

 RDA: Robust Domain Adaptation via Fourier Adversarial Attacking
RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking Updates 08/2021: check out our domain adaptation for video segmentation paper Domain A

Owner
EPFL Machine Learning and Optimization Laboratory
EPFL Machine Learning and Optimization Laboratory
NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping Paper: https://arxiv.org/abs/2102.06171.pdf Original code: htt

Vaibhav Balloli 320 Jan 2, 2023
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

null 51 Nov 29, 2022
Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)

Decentralized Reinforcement Learning This is the code complementing the paper Decentralized Reinforcment Learning: Global Decision-Making via Local Ec

null 40 Oct 30, 2022
Bachelor's Thesis in Computer Science: Privacy-Preserving Federated Learning Applied to Decentralized Data

federated is the source code for the Bachelor's Thesis Privacy-Preserving Federated Learning Applied to Decentralized Data (Spring 2021, NTNU) Federat

Dilawar Mahmood 25 Nov 30, 2022
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

null 1 Dec 17, 2021
LBK 35 Dec 26, 2022
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
A Peer-to-peer Platform for Secure, Privacy-preserving, Decentralized Data Science

PyGrid is a peer-to-peer network of data owners and data scientists who can collectively train AI models using PySyft. PyGrid is also the central serv

OpenMined 615 Jan 3, 2023
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 7, 2022