Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Overview

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements

Our implementation used for the MICCAI 2021 FLARE Challenge titled Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements.

You need to have the MedicalDataAugmentationTool framework by Christian Payer downloaded and in your PYTHONPATH for the scripts to work.

If you have questions about the code, write me a mail.

Dependencies

The following frameworks/libraries were used in the version as stated. If you run into problems with the libraries, please verify that you have the same version installed.

  • Python 3.9
  • TensorFlow 2.6
  • SimpleITK 2.0
  • Numpy 1.20

Dataset and Preprocessing

The dataset as well as a detailed description of it can be found on the challenge website. Follow the steps described there to download the data.

Define the base_dataset_folder containing the downloaded TrainingImg, TrainingMask and ValidationImg in the script preprocessing/preprocessing.py and execute it to generate TrainingImg_small and TrainingMask_small.

Also, download the setup folder provided in this repository and place it in the base_dataset_folder, the following structure is expected:

.                                       # The `base_dataset_folder` of the dataset
├── TrainingImg                         # Image folder containing all training images
│   ├── train_000_0000.nii.gz            
│   ├── ...                   
│   └── train_360_0000.nii.gz            
├── TrainingMask                        # Image folder containing all training masks
│   ├── train_000.nii.gz            
│   ├── ...                   
│   └── train_360.nii.gz  
├── ValidationImg                       # Image folder containing all validation images
│   ├── validation_000_0000.nii.gz            
│   ├── ...                   
│   └── validation_360_0000.nii.gz  
├── TrainingImg_small                   # Image folder containing all downsampled training images generated by `preprocessing/preprocessing.py`
│   ├── train_000_0000.nii.gz            
│   ├── ...                   
│   └── train_360_0000.nii.gz  
├── TrainingMask_small                  # Image folder containing all downsampled training masks generated by `preprocessing/preprocessing.py`
│   ├── train_000_0000.nii.gz            
│   ├── ...                   
│   └── train_360_0000.nii.gz  
└── setup                               # Setup folder as provided in this repository

Train Models

To train a localization model, run localization/main.py after defining the base_dataset_folder as well as the base_output_folder.

To train a segmentation model, run scn/main.py. Again, base_dataset_folder and base_output_folder need to be set accordingly beforehand.

In both cases in function run(), the variable cv can be set to 0, 1, 2, 3 or 4. The values 1-4 represent the respective cross-validation fold. When choosing 0, all training data is used to train the model, which also deactivates the generation of test outputs.

Further parameters like the number of training iterations (max_iter) and the number of iterations after which to perfrom testing (test_iter) can be modified in __init__() of the MainLoop class.

Generate a SavedModel

To convert a trained network to a SavedModel, the script localization/main_create_model.py respectively scn/main_create_model.py can be used after a model was trained.

Before running the respective script, the variable load_model_base needs to be set to the trained models output folder, e.g., .../localization/cv1/2021-09-27_13-18-59.

Furthermore, load_model_iter should be set to the same value as max_iter used during training the model. The value needs to be set to an iteration for which the network weights have been generated.

Generate tf_utils_module

The script inference/inference_tf_utils_module.py can be used to trace and save the tf.functions used for preprocessing during inference into a SavedModel and generate saved_models/tf_utils_module.

To do so, the input_path and output_path need to be defined in the script. The input_path is expected to contain valid images, we suggest to use the folder ValidationImg.

Inference

The provided inference script can be used to evaluate the performance of our method on unseen data efficiently.

The script inference/inference.py requires that all SavedModels are present in the saved_models folder, i.e., saved_models/localization, saved_models/segmentation and saved_models/tf_utils_module need to contain the respective SavedModel. Either, use the provided SavedModels for inference by copying them from submitted_saved_models to saved_models, or use your own models generated as described above.

Additionally, the input_path and output_path need to be defined in the script. The input_path is expected to contain valid images, we suggest to use the folder ValidationImg.

.                                       # The base folder of this repository.
├── saved_models                        # Required by `inference.py`.
│   ├── localization                    # SavedModel of the localization model.
│   │   ├── assets
│   │   ├── variables
│   │   └── saved_model.pb
│   ├── segmentation                    # SavedModel of the segmentation (scn) model.
│   │   ├── assets
│   │   ├── variables
│   │   └── saved_model.pb
│   └── tf_utils_module                 # SavedModel of the tf.functions used for preprocessing during inference.
│       ├── assets
│       ├── variables
│       └── saved_model.pb
...

Docker

The provided Dockerfile can be used to generate a docker image which can readily be used for inference. The SavedModels are expected in the folder saved_models, either copy the provided SavedModels from submitted_saved_models to saved_models or generate your own. If you have a problem with setting up docker, please refer to the documentation.

To build a docker model, run the following command in the folder containing the Dockerfile.

docker build -t icg .

To run your built docker, use the command below, after defining the input and output directories within the command. We recommend to use ValidationImg as input folder.

If you have multiple GPUs and want to select a specific one to run the docker image, modify /dev/nvidia0 to the respective GPUs identifier, e.g., /dev/nvidia1.

docker container run --gpus all --device /dev/nvidia0 --device /dev/nvidia-uvm --device /dev/nvidia-uvm-tools --device /dev/nvidiactl --name icg --rm -v /PATH/TO/DATASET/ValidationImg/:/workspace/inputs/ -v /PATH/TO/OUTPUT/FOLDER/:/workspace/outputs/ icg:latest /bin/bash -c "sh predict.sh" 

Citation

If you use this code for your research, please cite our paper.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements

@article{Thaler2021Efficient,
  title={Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements},
  author={Thaler, Franz and Payer, Christian and Bischof, Horst and {\v{S}}tern, Darko},
  year={2021}
}
You might also like...
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

RGBD-Net - This repository contains a pytorch lightning implementation for the 3DV 2021 RGBD-Net paper.
RGBD-Net - This repository contains a pytorch lightning implementation for the 3DV 2021 RGBD-Net paper.

[3DV 2021] We propose a new cascaded architecture for novel view synthesis, called RGBD-Net, which consists of two core components: a hierarchical depth regression network and a depth-aware generator network.

Azua - build AI algorithms to aid efficient decision-making with minimum data requirements.
Azua - build AI algorithms to aid efficient decision-making with minimum data requirements.

Project Azua 0. Overview Many modern AI algorithms are known to be data-hungry, whereas human decision-making is much more efficient. The human can re

New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.
U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

Neural networks applied in recognizing guitar chords using python, AutoML.NET with C# and .NET Core
Neural networks applied in recognizing guitar chords using python, AutoML.NET with C# and .NET Core

Chord Recognition Demo application The demo application is written in C# with .NETCore. As of July 9, 2020, the only version available is for windows

Owner
Franz Thaler
Franz Thaler
Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Phil Wang 180 Jan 5, 2023
2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation Authors: Ge-Peng Ji*, Yu-Cheng Chou*, Deng-Ping Fan, Geng Che

Ge-Peng Ji (Daniel) 85 Dec 30, 2022
[CVPR2021] DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets

DoDNet This repo holds the pytorch implementation of DoDNet: DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datase

null 116 Dec 12, 2022
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory

Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of

null 1 Jan 27, 2022
The implementation of our CIKM 2021 paper titled as: "Cross-Market Product Recommendation"

FOREC: A Cross-Market Recommendation System This repository provides the implementation of our CIKM 2021 paper titled as "Cross-Market Product Recomme

Hamed Bonab 16 Sep 12, 2022
Pre-trained model, code, and materials from the paper "Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation" (MICCAI 2019).

Adaptive Segmentation Mask Attack This repository contains the implementation of the Adaptive Segmentation Mask Attack (ASMA), a targeted adversarial

Utku Ozbulak 53 Jul 4, 2022
Segcache: a memory-efficient and scalable in-memory key-value cache for small objects

Segcache: a memory-efficient and scalable in-memory key-value cache for small objects This repo contains the code of Segcache described in the followi

TheSys Group @ CMU CS 78 Jan 7, 2023
Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

RMNet This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation. Cite this work @inprocee

Haozhe Xie 76 Dec 14, 2022
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Jiaqi Gu 2 Jan 4, 2022
Lowest memory consumption and second shortest runtime in NTIRE 2022 challenge on Efficient Super-Resolution

FMEN Lowest memory consumption and second shortest runtime in NTIRE 2022 on Efficient Super-Resolution. Our paper: Fast and Memory-Efficient Network T

null 33 Dec 1, 2022