Tensorflow 2 implementation of our high quality frame interpolation neural network

Overview

FILM: Frame Interpolation for Large Scene Motion

Project | Paper | YouTube | Benchmark Scores

Tensorflow 2 implementation of our high quality frame interpolation neural network. We present a unified single-network approach that doesn't use additional pre-trained networks, like optical flow or depth, and yet achieve state-of-the-art results. We use a multi-scale feature extractor that shares the same convolution weights across the scales. Our model is trainable from frame triplets alone.

FILM: Frame Interpolation for Large Motion
Fitsum Reda, Janne Kontkanen, Eric Tabellion, Deqing Sun, Caroline Pantofaru, Brian Curless
Google Research
Technical Report 2022.

A sample 2 seconds moment. FILM transforms near-duplicate photos into a slow motion footage that look like it is shot with a video camera.

Installation

  • Get Frame Interpolation source codes
> git clone https://github.com/google-research/frame-interpolation frame_interpolation
  • Optionally, pull the recommended Docker base image
> docker pull gcr.io/deeplearning-platform-release/tf2-gpu.2-6:latest
  • Install dependencies
> pip install -r frame_interpolation/requirements.txt
> apt-get install ffmpeg

Pre-trained Models

  • Create a directory where you can keep large files. Ideally, not in this directory.
> mkdir 
   

   
  • Download pre-trained TF2 Saved Models from google drive and put into .

The downloaded folder should have the following structure:

pretrained_models/
├── film_net/
│   ├── L1/
│   ├── VGG/
│   ├── Style/
├── vgg/
│   ├── imagenet-vgg-verydeep-19.mat

Running the Codes

The following instructions run the interpolator on the photos provided in frame_interpolation/photos.

One mid-frame interpolation

To generate an intermediate photo from the input near-duplicate photos, simply run:

> python3 -m frame_interpolation.eval.interpolator_test \
     --frame1 frame_interpolation/photos/one.png \
     --frame2 frame_interpolation/photos/two.png \
     --model_path 
   
    /film_net/Style/saved_model \
     --output_frame frame_interpolation/photos/middle.png \

   

This will produce the sub-frame at t=0.5 and save as 'frame_interpolation/photos/middle.png'.

Many in-between frames interpolation

Takes in a set of directories identified by a glob (--pattern). Each directory is expected to contain at least two input frames, with each contiguous frame pair treated as an input to generate in-between frames.

/film_net/Style/saved_model \ --times_to_interpolate 6 \ --output_video">
> python3 -m frame_interpolation.eval.interpolator_cli \
     --pattern "frame_interpolation/photos" \
     --model_path 
   
    /film_net/Style/saved_model \
     --times_to_interpolate 6 \
     --output_video

   

You will find the interpolated frames (including the input frames) in 'frame_interpolation/photos/interpolated_frames/', and the interpolated video at 'frame_interpolation/photos/interpolated.mp4'.

The number of frames is determined by --times_to_interpolate, which controls the number of times the frame interpolator is invoked. When the number of frames in a directory is 2, the number of output frames will be 2^times_to_interpolate+1.

Datasets

We use Vimeo-90K as our main training dataset. For quantitative evaluations, we rely on commonly used benchmark datasets, specifically:

Creating a TFRecord

The training and benchmark evaluation scripts expect the frame triplets in the TFRecord storage format.

We have included scripts that encode the relevant frame triplets into a tf.train.Example data format, and export to a TFRecord file.

You can use the commands python3 -m frame_interpolation.datasets.create_ _tfrecord --help for more information.

For example, run the command below to create a TFRecord for the Middlebury-other dataset. Download the images and point --input_dir to the unzipped folder path.

> python3 -m frame_interpolation.datasets.create_middlebury_tfrecord \
    --input_dir=
   
     \
    --output_tfrecord_filepath=
    

   

Training

Below are our training gin configuration files for the different loss function:

frame_interpolation/training/
├── config/
│   ├── film_net-L1.gin
│   ├── film_net-VGG.gin
│   ├── film_net-Style.gin

To launch a training, simply pass the configuration filepath to the desired experiment.
By default, it uses all visible GPUs for training. To debug or train on a CPU, append --mode cpu.

> python3 -m frame_interpolation.training.train \
     --gin_config frame_interpolation/training/config/
   
    .gin \
     --base_folder 
     \
     --label 
    

    
   
  • When training finishes, the folder structure will look like this:

   
    /
├── 
    
   

Build a SavedModel

Optionally, to build a SavedModel format from a trained checkpoints folder, you can use this command:

> python3 -m frame_interpolation.training.build_saved_model_cli \
     --base_folder  \
     --label 
   

   
  • By default, a SavedModel is created when the training loop ends, and it will be saved at / .

Evaluation on Benchmarks

Below, we provided the evaluation gin configuration files for the benchmarks we have considered:

frame_interpolation/eval/
├── config/
│   ├── middlebury.gin
│   ├── ucf101.gin
│   ├── vimeo_90K.gin
│   ├── xiph_2K.gin
│   ├── xiph_4K.gin

To run an evaluation, simply pass the configuration file of the desired evaluation dataset.
If a GPU is visible, it runs on it.

> python3 -m frame_interpolation.eval.eval_cli -- \
     --gin_config frame_interpolation/eval/config/
   
    .gin \
     --model_path 
    
     /film_net/L1/saved_model

    
   

The above command will produce the PSNR and SSIM scores presented in the paper.

Citation

If you find this implementation useful in your works, please acknowledge it appropriately by citing:

@inproceedings{reda2022film,
 title = {Frame Interpolation for Large Motion},
 author = {Fitsum Reda and Janne Kontkanen and Eric Tabellion and Deqing Sun and Caroline Pantofaru and Brian Curless},
 booktitle = {arXiv},
 year = {2022}
}
@misc{film-tf,
  title = {Tensorflow 2 Implementation of "FILM: Frame Interpolation for Large Scene Motion"},
  author = {Fitsum Reda and Janne Kontkanen and Eric Tabellion and Deqing Sun and Caroline Pantofaru and Brian Curless},
  year = {2022},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/google-research/frame-interpolation}}
}

Contact: Fitsum Reda ([email protected])

Acknowledgments

We would like to thank Richard Tucker, Jason Lai and David Minnen. We would also like to thank Jamie Aspinall for the imagery included in this repository.

Coding style

  • 2 spaces for indentation
  • 80 character line length
  • PEP8 formatting

Disclaimer

This is not an officially supported Google product.

You might also like...
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

Construct a neural network frame by Numpy

本项目的CSDN博客链接:https://blog.csdn.net/weixin_41578567/article/details/111482022 1. 概览 本项目主要用于神经网络的学习,通过基于numpy的实现,了解神经网络底层前向传播、反向传播以及各类优化器的原理。 该项目目前已实现的功

Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

Neural Nano-Optics for High-quality Thin Lens Imaging

Neural Nano-Optics for High-quality Thin Lens Imaging Project Page | Paper | Data Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-H

This is an official implementation of "Polarized Self-Attention: Towards High-quality Pixel-wise Regression"

Polarized Self-Attention: Towards High-quality Pixel-wise Regression This is an official implementation of: Huajun Liu, Fuqiang Liu, Xinyi Fan and Don

PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech
PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

NeRViS: Neural Re-rendering for Full-frame Video Stabilization

Neural Re-rendering for Full-frame Video Stabilization

Neural Re-rendering for Full-frame Video Stabilization

NeRViS: Neural Re-rendering for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Comments
  • Enhacement of utils.py and interpolator_cli.py

    Enhacement of utils.py and interpolator_cli.py

    Enhacement of utils.py and interpolator_cli.py, this PR adds tqdm to the interpolation function and the frame compilation function to show a progress bar while loading. Very minor addition, but works well for my taste!

    opened by AIManifest 4
  • Adding frame splitting function to allow lower GPU memory usage on larger images

    Adding frame splitting function to allow lower GPU memory usage on larger images

    Input parameters are number of tiles to split the frame into, and padding size in pixels.

    Implementation not yet working, throwing error

    ValueError: Could not find matching function to call loaded from the SavedModel. Got:
      Positional arguments (3 total):
        * {'x0': <tf.Tensor 'inputs_1:0' shape=(1, 175, 175, 3) dtype=float64>, 'x1': <tf.Tensor 'inputs_2:0' shape=(1, 175, 175, 3) dtype=float64>, 'time': <tf.Tensor 'inputs:0' shape=(1, 1) dtype=float32>}
        * False
        * None
      Keyword arguments: {}
    
    Expected these arguments to match one of the following 4 option(s):
    
    Option 1:
      Positional arguments (3 total):
        * {'x0': TensorSpec(shape=(None, None, None, 3), dtype=tf.float32, name='x0'), 'time': TensorSpec(shape=(None, 1), dtype=tf.float32, name='time'), 'x1': TensorSpec(shape=(None, None, None, 3), dtype=tf.float32, name='x1')}
        * False
        * None
      Keyword arguments: {}
    
    Option 2:
      Positional arguments (3 total):
        * {'x0': TensorSpec(shape=(None, None, None, 3), dtype=tf.float32, name='inputs/x0'), 'time': TensorSpec(shape=(None, 1), dtype=tf.float32, name='inputs/time'), 'x1': TensorSpec(shape=(None, None, None, 3), dtype=tf.float32, name='inputs/x1')}
        * False
        * None
      Keyword arguments: {}
    
    Option 3:
      Positional arguments (3 total):
        * {'x0': TensorSpec(shape=(None, None, None, 3), dtype=tf.float32, name='inputs/x0'), 'x1': TensorSpec(shape=(None, None, None, 3), dtype=tf.float32, name='inputs/x1'), 'time': TensorSpec(shape=(None, 1), dtype=tf.float32, name='inputs/time')}
        * True
        * None
      Keyword arguments: {}
    
    Option 4:
      Positional arguments (3 total):
        * {'time': TensorSpec(shape=(None, 1), dtype=tf.float32, name='time'), 'x1': TensorSpec(shape=(None, None, None, 3), dtype=tf.float32, name='x1'), 'x0': TensorSpec(shape=(None, None, None, 3), dtype=tf.float32, name='x0')}
        * True
        * None
      Keyword arguments: {}
    
    opened by marianobasti 1
  • Add Docker environment & web demo

    Add Docker environment & web demo

    This pull request makes it possible to run your model inside a Docker environment, which makes it easier for other people to run it. We're using an open source tool called Cog to make this process easier.

    This also means we can make a web page where other people can try out your model! View it here: https://replicate.com/google-research/frame-interpolation. You can find the docker file under the tab ‘run model with docker’.

    We have added some examples to the page, but do claim the page so you can own the page, customise the Example gallery as you like, push any future update to the web demo, and we'll feature it on our website and tweet about it too. You can find the 'Claim this model' button on the top of the page. Any member of the google-researach organization on GitHub can claim the model ~

    In case you're wondering who I am, I'm from Replicate, where we're trying to make machine learning reproducible. We got frustrated that we couldn't run all the really interesting ML work being done. So, we're going round implementing models we like. 😊

    opened by chenxwh 0
an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch

revisiting-sepconv This is a reference implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation [1] using PyTorch. Given two f

Simon Niklaus 59 Dec 22, 2022
An implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 984 Dec 16, 2022
SE3 Pose Interp - Interpolate camera pose or trajectory in SE3, pose interpolation, trajectory interpolation

SE3 Pose Interpolation Pose estimated from SLAM system are always discrete, and

Ran Cheng 4 Dec 15, 2022
This is the official repository of XVFI (eXtreme Video Frame Interpolation)

XVFI This is the official repository of XVFI (eXtreme Video Frame Interpolation), https://arxiv.org/abs/2103.16206 Last Update: 20210607 We provide th

Jihyong Oh 195 Dec 29, 2022
Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation

TimeLens: Event-based Video Frame Interpolation This repository is about the High Speed Event and RGB (HS-ERGB) dataset, used in the 2021 CVPR paper T

Robotics and Perception Group 544 Dec 19, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation Ported from https://github.com/hzwer/arXiv2020-RIFE Dependencies NumPy

null 49 Jan 7, 2023
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

ABME (ICCV2021) Junheum Park, Chul Lee, and Chang-Su Kim Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolati

Junheum Park 86 Dec 28, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 4, 2023
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd

旷视天元 MegEngine 28 Dec 9, 2022
Video Frame Interpolation with Transformer (CVPR2022)

VFIformer Official PyTorch implementation of our CVPR2022 paper Video Frame Interpolation with Transformer Dependencies python >= 3.8 pytorch >= 1.8.0

DV Lab 63 Dec 16, 2022