A collection of resources and papers on Diffusion Models, a darkhorse in the field of Generative Models

Overview

Awesome License: MIT Made With Love

This repository contains a collection of resources and papers on Diffusion Models and Score-based Models.

If there are any missing valuable resources or papers or any materials related to diffusion model, please do not hesitate to create or pull request to issues. I am happy to reflect them.

Contents

Resources

Introductory Post

A Unified Approach to Variational Autoencoders and Stochastic Normalizing Flows via Markov Chains
Johannes Hertrich, Paul Hagemann, Gabriele Steidl
arXiv 2021. [Paper]
24 Nov 2021

Introduction to deep generative modeling: Diffusion-based Deep Generative Models
Jakub Tomczak
[Website]
30 Aug 2021

What are Diffusion Models?
Lilian Weng
2021. [Website]
11 Jul 2021

Diffusion Models as a kind of VAE
Angus Turner
[Website]
29 June 2021

Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
[Website]
5 May 2021

Papers

Image

Image Generation

Conditional Image Generation with Score-Based Diffusion Models
Georgios Batzolis, Jan Stanczuk, Carola-Bibiane Schönlieb, Christian Etmann
arXiv 2021. [Paper]
26 Nov 2021

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes
Sam Bond-Taylor1, Peter Hessey1, Hiroshi Sasaki, Toby P. Breckon, Chris G. Willcocks
arXiv 2021. [Paper] [Github]
24 Nov 2021

Diffusion Normalizing Flow
Qinsheng Zhang, Yongxin Chen
NeurIPS 2021. [Paper] [Github]
14 Oct 2021

Denoising Diffusion Gamma Models
Eliya Nachmani1, Robin San Roman1, Lior Wolf
arXiv 2021. [Paper]
10 Oct 2021

Score-based Generative Neural Networks for Large-Scale Optimal Transport
Max Daniels, Tyler Maunu, Paul Hand
arXiv 2021. [Paper]
7 Oct 2021

Score-Based Generative Classifiers
Roland S. Zimmermann, Lukas Schott, Yang Song, Benjamin A. Dunn, David A. Klindt
arXiv 2021. [Paper]
1 Oct 2021

Bilateral Denoising Diffusion Models
Max W. Y. Lam, Jun Wang, Rongjie Huang, Dan Su, Dong Yu
arXiv 2021. [Paper] [Project]
26 Aug 2021

ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis
Patrick Esser1, Robin Rombach1, Andreas Blattmann1, Björn Ommer
NeurIPS 2021. [Paper] [Project]
19 Aug 2021

ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models
Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, Sungroh Yoon
ICCV 2021 (Oral). [Paper] [Github]
6 Aug 2021

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations
Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, Stefano Ermon
arXiv 2021. [Paper] [Project] [Github]
2 Aug 2021

Score-Based Point Cloud Denoising
Shitong Luo, Wei Hu
arXiv 2021. [Paper] [Github]
23 Jul 2021

Structured Denoising Diffusion Models in Discrete State-Spaces
Jacob Austin1, Daniel D. Johnson1, Jonathan Ho, Daniel Tarlow, Rianne van den Berg
arXiv 2021. [Paper]
7 Jul 2021

Variational Diffusion Models
Diederik P. Kingma1, Tim Salimans1, Ben Poole, Jonathan Ho
arXiv 2021. [Paper] [Github]
1 Jul 2021

Deep Generative Learning via Schrödinger Bridge
Gefei Wang, Yuling Jiao, Qian Xu, Yang Wang, Can Yang
ICML 2021. [Paper]
19 Jun 2021

Non Gaussian Denoising Diffusion Models
Eliya Nachmani1, Robin San Roman1, Lior Wolf
arXiv 2021. [Paper] [Project]
14 Jun 2021

D2C: Diffusion-Denoising Models for Few-shot Conditional Generation
Abhishek Sinha1, Jiaming Song1, Chenlin Meng, Stefano Ermon
arXiv 2021. [Paper] [Project] [Github]
12 Jun 2021

Score-based Generative Modeling in Latent Space
Arash Vahdat1, Karsten Kreis1, Jan Kautz
arXiv 2021. [Paper]
10 Jun 2021

Learning to Efficiently Sample from Diffusion Probabilistic Models
Daniel Watson, Jonathan Ho, Mohammad Norouzi, William Chan
arXiv 2021. [Paper]
7 Jun 2021

A Variational Perspective on Diffusion-Based Generative Models and Score Matching
Chin-Wei Huang, Jae Hyun Lim, Aaron Courville
ICML Workshop 2021. [Paper] [Github]
5 Jun 2021

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling
Valentin De Bortoli, James Thornton, Jeremy Heng, Arnaud Doucet
arXiv 2021. [Paper] [Project] [Github]
1 Jun 2021

On Fast Sampling of Diffusion Probabilistic Models
Zhifeng Kong, Wei Ping
ICML Workshop 2021. [Paper] [Github]
31 May 2021

Cascaded Diffusion Models for High Fidelity Image Generation
Jonathan Ho1, Chitwan Saharia1, William Chan, David J. Fleet, Mohammad Norouzi, Tim Salimans
arXiv 2021. [Paper] [Project]
30 May 2021

Gotta Go Fast When Generating Data with Score-Based Models
Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, Ioannis Mitliagkas
arXiv 2021. [Paper] [Github]
28 May 2021

Diffusion Models Beat GANs on Image Synthesis
Prafulla Dhariwal1, Alex Nichol1
arXiv 2021. [Paper] [Github]
11 May 2021

Image Super-Resolution via Iterative Refinement
Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J. Fleet, Mohammad Norouzi
arXiv 2021. [Paper] [Project] [Github]
15 Apr 2021

Noise Estimation for Generative Diffusion Models
Robin San-Roman1, Eliya Nachmani1, Lior Wolf
arXiv 2021. [Paper]
6 Apr 2021

Diffusion Probabilistic Models for 3D Point Cloud Generation
Shitong Luo, Wei Hu
CVPR 2021. [Paper] [Github]
2 Mar 2021

Improved Denoising Diffusion Probabilistic Models
Alex Nichol1, Prafulla Dhariwal1
ICLR 2021. [Paper] [Github]
18 Feb 2021

Maximum Likelihood Training of Score-Based Diffusion Models
Yang Song1, Conor Durkan1, Iain Murray, Stefano Ermon
arXiv 2021. [Paper]
22 Jan 2021

Learning Energy-Based Models by Diffusion Recovery Likelihood
Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma
ICLR 2021. [Paper] [Github]
15 Dec 2020

Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, Ben Poole
ICLR 2021 (Oral). [Paper] [Github]
26 Nov 2020

Variational (Gradient) Estimate of the Score Function in Energy-based Latent Variable Models
Fan Bao, Kun Xu, Chongxuan Li, Lanqing Hong, Jun Zhu, Bo Zhang
ICML 2021. [Paper]
16 Oct 2020

Denoising Diffusion Implicit Models
Jiaming Song, Chenlin Meng, Stefano Ermon
ICLR 2021. [Paper] [Github]
6 Oct 2020

Adversarial score matching and improved sampling for image generation
Alexia Jolicoeur-Martineau1, Rémi Piché-Taillefer1, Rémi Tachet des Combes, Ioannis Mitliagkas
ICLR 2021. [Paper] [Github]
11 Sep 2020

Denoising Diffusion Probabilistic Models
Jonathan Ho, Ajay Jain, Pieter Abbeel
NeurIPS 2020. [Paper] [Github] [Github2]
19 Jun 2020

Improved Techniques for Training Score-Based Generative Models
Yang Song, Stefano Ermon
NeurIPS 2020. [Paper] [Github]
16 Jun 2020

Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song, Stefano Ermon
NeurIPS 2019. [Paper] [Project] [Github]
12 Jul 2019

Neural Stochastic Differential Equations: Deep Latent Gaussian Models in the Diffusion Limit
Belinda Tzen, Maxim Raginsky
arXiv 2019. [Paper]
23 May 2019

Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, Surya Ganguli
ICML 2015. [Paper] [Github]
2 Mar 2015

A Connection Between Score Matching and Denoising Autoencoders
Pascal Vincent
Neural Computation 2011. [Paper]
7 Jul 2011

Bayesian Learning via Stochastic Gradient Langevin Dynamics
Max Welling, Yee Whye Teh
ICML 2011. [Paper] [Github]
28 June 2011

Image-to-Image Translation

Conditional Image Generation with Score-Based Diffusion Models
Georgios Batzolis, Jan Stanczuk, Carola-Bibiane Schönlieb, Christian Etmann
arXiv 2021. [Paper]
26 Nov 2021

ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models
Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, Sungroh Yoon
ICCV 2021 (Oral). [Paper] [Github]
6 Aug 2021

UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models
Hiroshi Sasaki, Chris G. Willcocks, Toby P. Breckon
arXiv 2021. [Paper]
12 Apr 2021

Image Editing

Conditional Image Generation with Score-Based Diffusion Models
Georgios Batzolis, Jan Stanczuk, Carola-Bibiane Schönlieb, Christian Etmann
arXiv 2021. [Paper] 26 Nov 2021

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes
Sam Bond-Taylor1, Peter Hessey1, Hiroshi Sasaki, Toby P. Breckon, Chris G. Willcocks
arXiv 2021. [Paper] [Github]
24 Nov 2021

ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models
Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, Sungroh Yoon
ICCV 2021 (Oral). [Paper] [Github]
6 Aug 2021

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations
Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, Stefano Ermon
arXiv 2021. [Paper] [Project] [Github]
2 Aug 2021

Super Resolution

Conditional Image Generation with Score-Based Diffusion Models
Georgios Batzolis, Jan Stanczuk, Carola-Bibiane Schönlieb, Christian Etmann
arXiv 2021. [Paper]
26 Nov 2021

S3RP: Self-Supervised Super-Resolution and Prediction for Advection-Diffusion Process
Chulin Wang, Kyongmin Yeo, Xiao Jin, Andres Codas, Levente J. Klein, Bruce Elmegreen
arXiv 2021. [Paper]
8 Nov 2021

Autoregressive Diffusion Models
Emiel Hoogeboom, Alexey A. Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, Tim Salimans
arXiv 2021. [Paper]
5 Oct 2021

ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models
Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, Sungroh Yoon
ICCV 2021 (Oral). [Paper] [Github]
6 Aug 2021

Cascaded Diffusion Models for High Fidelity Image Generation
Jonathan Ho1, Chitwan Saharia1, William Chan, David J. Fleet, Mohammad Norouzi, Tim Salimans
arXiv 2021. [Paper] [Project]
30 May 2021

SRDiff: Single Image Super-Resolution with Diffusion Probabilistic Models
Haoying Li, Yifan Yang, Meng Chang, Huajun Feng, Zhihai Xu, Qi Li, Yueting Chen
arXiv 2021. [Paper]
30 Apr 2021

Image Super-Resolution via Iterative Refinement
Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J. Fleet, Mohammad Norouzi
arXiv 2021. [Paper] [Project] [Github]
15 Apr 2021

Text-to-Image

Vector Quantized Diffusion Model for Text-to-Image Synthesis
Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, Baining Guo
arXiv 2021. [Paper] [Github]
29 Nov 2021

Blended Diffusion for Text-driven Editing of Natural Images
Omri Avrahami, Dani Lischinski, Ohad Fried
arXiv 2021. [Paper] [Github]
29 Nov 2021

DiffusionCLIP: Text-guided Image Manipulation Using Diffusion Models
Gwanghyun Kim, Jong Chul Ye
arXiv 2021. [Paper]
6 Oct 2021

Adversarial Attack and Defense

Adversarial purification with Score-based generative models
Jongmin Yoon, Sung Ju Hwang, Juho Lee
ICML 2021. [Paper] [Github]
11 Jun 2021

Medical Imaging

Score-based diffusion models for accelerated MRI
Hyungjin Chung, Jong chul Ye
arXiv 2021. [Paper]
8 Oct 2021

Graph Generation

Permutation Invariant Graph Generation via Score-Based Generative Modeling
Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, Stefano Ermon
AISTATS 2021. [Paper] [Github]
2 Mar 2020

Audio

Audio Generation

Denoising Diffusion Gamma Models
Eliya Nachmani1, Robin San Roman1, Lior Wolf
arXiv 2021. [Paper]
10 Oct 2021

Variational Diffusion Models
Diederik P. Kingma, Tim Salimans, Ben Poole, Jonathan Ho
arXiv 2021. [Paper] [Github]
1 Jul 2021

CRASH: Raw Audio Score-based Generative Modeling for Controllable High-resolution Drum Sound Synthesis
Simon Rouard1, Gaëtan Hadjeres1
arXiv 2021. [Paper] [Project]
14 Jun 2021

PriorGrad: Improving Conditional Denoising Diffusion Models with Data-Driven Adaptive Prior
Sang-gil Lee, Heeseung Kim, Chaehun Shin, Xu Tan, Chang Liu, Qi Meng, Tao Qin, Wei Chen, Sungroh Yoon, Tie-Yan Liu
arXiv 2021. [Paper] [Project]
11 Jun 2021

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism
Jinglin Liu1, Chengxi Li1, Yi Ren1, Feiyang Chen, Peng Liu, Zhou Zhao
arXiv 2021. [Paper] [Project] [Github]
6 May 2021

Symbolic Music Generation with Diffusion Models
Gautam Mittal, Jesse Engel, Curtis Hawthorne, Ian Simon
arXiv 2021. [Paper] [Code]
30 Mar 2021

DiffWave with Continuous-time Variational Diffusion Models
Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, Bryan Catanzaro
ICLR 2021 [Paper] [Project] [Github]
21 Sep 2020

DiffWave: A Versatile Diffusion Model for Audio Synthesis
Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, Surya Ganguli
ICML 2021 (Oral) [Paper] [Github] [Github2]
21 Sep 2020

WaveGrad: Estimating Gradients for Waveform Generation
Nanxin Chen, Yu Zhang, Heiga Zen, Ron J. Weiss, Mohammad Norouzi, William Chan
ICLR 2021. [Paper] [Project] [Github]
2 Sep 2020

Audio Conversion

DiffSVC: A Diffusion Probabilistic Model for Singing Voice Conversion
Songxiang Liu1, Yuewen Cao1, Dan Su, Helen Meng
arXiv 2021. [Paper] [Github]
28 May 2021

Audio Enhancement

A Study on Speech Enhancement Based on Diffusion Probabilistic Model
Yen-Ju Lu1, Yu Tsao1, Shinji Watanabe
arXiv 2021. [Paper]
25 Jul 2021

Restoring degraded speech via a modified diffusion model
Jianwei Zhang, Suren Jayasuriya, Visar Berisha
Interspeech 2021. [Paper]
22 Apr 2021

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling
Junhyeok Lee, Seungu Han
Interspeech 2021. [Paper] [Project] [Github]
6 Apr 2021

Text-to-Speech

Guided-TTS:Text-to-Speech with Untranscribed Speech
Heeseung Kim, Sungwon Kim, Sungroh Yoon
arXiv 2021. [Paper]
32 Nov 2021

EdiTTS: Score-based Editing for Controllable Text-to-Speech
Jaesung Tae1, Hyeongju Kim1, Taesu Kim
arXiv 2021. [Paper]
6 Oct 2021

WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis
Nanxin Chen, Yu Zhang, Heiga Zen, Ron J. Weiss, Mohammad Norouzi, Najim Dehak, William Chan
arXiv 2021. [Paper] [Project] [Github] [Github2]
17 Jun 2021

Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech
Vadim Popov1, Ivan Vovk1, Vladimir Gogoryan, Tasnima Sadekova, Mikhail Kudinov
ICML 2021. [Paper] [Project] [Github]
13 May 2021

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism
Jinglin Liu1, Chengxi Li1, Yi Ren1, Feiyang Chen, Peng Liu, Zhou Zhao
arXiv 2021. [Paper] [Project] [Github]
6 May 2021

Diff-TTS: A Denoising Diffusion Model for Text-to-Speech
Myeonghun Jeong, Hyeongju Kim, Sung Jun Cheon, Byoung Jin Choi, Nam Soo Kim
Interspeech 2021. [Paper]
3 Apr 2021

Miscellaneous

Data Imputation

CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation
Yusuke Tashiro, Jiaming Song, Yang Song, Stefano Ermon
arXiv 2021. [Paper]
7 Jul 2021

Handwriting Synthesis

Diffusion models for Handwriting Generation
Troy Luhman1, Eric Luhman1
arXiv 2020. [Paper] [Github]
13 Nov 2020

Natural Language Processing

Zero-Shot Translation using Diffusion Models
Eliya Nachmani1, Shaked Dovrat1
arXiv 2021. [Paper]
2 Nov 2021

Time-Series Forecasting

Autoregressive Denoising Diffusion Models for Multivariate Probabilistic Time Series Forecasting
Kashif Rasul, Calvin Seward, Ingmar Schuster, Roland Vollgraf
ICLR 2021. [Paper]
2 Feb 2021

Applications

Deep Diffusion Models for Robust Channel Estimation
Marius Arvinte, Jonathan I Tamir
arXiv 2021. [Paper] [Github]
16 Nov 2021

Deep diffusion-based forecasting of COVID-19 by incorporating network-level mobility information
Padmaksha Roy, Shailik Sarkar, Subhodip Biswas, Fanglan Chen, Zhiqian Chen, Naren Ramakrishnan, Chang-Tien Lu
arXiv 2021. [Paper]
9 Nov 2021

Crystal Diffusion Variational Autoencoder for Periodic Material Generation
Tian Xie1, Xiang Fu1, Octavian-Eugen Ganea1, Regina Barzilay, Tommi Jaakkola
arXiv 2021. [Paper]
12 Oct 2021

Comments
  • typo & change the category of one paper

    typo & change the category of one paper

    (1) In the table of content: 3D-view => 3D (2) To be more precise, the paper "LION: Latent Point Diffusion Models for 3D Shape Generation" should be listed under "Point Cloud"

    opened by chenguolin 2
  • Another new paper

    Another new paper

    Hi, thanks for making this great repo to track the recent awesome works.

    We have recently posted our paper to arXiv (https://arxiv.org/abs/2205.12952) with the webpage (https://tengfei-wang.github.io/PITI/index.html), which uses diffusion model for image-to-image translation. Could you please include this paper in the repo?

    Thanks!

    opened by zhangmozhe 2
  • Some papers to add

    Some papers to add

    The Schrodinger bridge problem is a question from statistical physics to find the shortest path that evolves a dynamic system into another system. (I'm not familiar with the concepts, though) https://arxiv.org/abs/1608.05862

    And here are some papers that relate this problem with the diffusion probabilistic model. https://arxiv.org/abs/2106.01357 http://proceedings.mlr.press/v139/wang21l/wang21l.pdf

    opened by jmyoon1 2
  • Suggestion to add CVPR 2022 Diffusion Tutorial video link

    Suggestion to add CVPR 2022 Diffusion Tutorial video link

    CVPR 2022 Tutorial - Denoising Diffusion-based Generative Modeling: Foundations and Applications

    Video link: https://www.youtube.com/watch?v=cS6JQpEY9cs

    opened by Siddharth-Shrivastava7 1
  • New papers for diffusion models!

    New papers for diffusion models!

    The first paper of diffusion models in instance segmentation: DiffusionInst: Diffusion Model for Instance Segmentation arxiv: https://arxiv.org/abs/2212.02773 code: https://github.com/chenhaoxing/DiffusionInst

    Nice job!

    opened by zhangxgu 1
  • New paper about scene graph-based diffusion model

    New paper about scene graph-based diffusion model

    Hello, thanks for your great repo, it is really awesome. Recently we published our new paper "Diffusion-Based Scene Graph to Image Generation with Masked Contrastive Pre-Training" on arXiv, which proposes a diffusion model that directly conditions on scene graphs to generate images. Could you please add this paper to the repo? Thanks a lot!

    arxiv: https://arxiv.org/abs/2211.11138 GitHub: https://github.com/YangLing0818/SGDiff

    opened by YangLing0818 1
  • New paper

    New paper

    Hi, thank you for your great repo. We have recently published our survey paper, "Diffusion Models for Medical Image Analysis: A Comprehensive Survey," to arXiv. Could you please add this paper to the repo? Thank you very much.

    Arxiv: https://arxiv.org/abs/2211.07804 GitHub: https://github.com/amirhossein-kz/Awesome-Diffusion-Models-in-Medical-Imaging

    opened by amirhossein-kz 1
  • New paper in language generaion

    New paper in language generaion

    You may consider adding this paper: Composable Text Controls in Latent Space with ODEs https://arxiv.org/abs/2208.00638 And the code is released at https://github.com/guangyliu/LatentOps

    opened by guangyliu 1
  • A paper not related to diffusion model

    A paper not related to diffusion model

    Deep diffusion-based forecasting of COVID-19 by incorporating network-level mobility information This paper seems not related to diffusion model, where "diffusion" means the spreading process of pandemic in this paper

    opened by zhou-zl18 1
  • adding a lecture

    adding a lecture

    opened by gabriben 1
  • Update README.md

    Update README.md

    1. DiffFace: Diffusion-based Face Swapping with Facial Guidance added,
    2. project link of MIDMs: Matching Interleaved Diffusion Models for Exemplar-based Image Translation added.
    opened by j0seo 0
  • add detextify

    add detextify

    Adds Detextify a Python library to remove unwanted pseudo-text from images generated by your favorite generative AI models (Stable Diffusion, Midjourney, DALL·E)

    opened by mihail911 0
Owner
null
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

null 41 Apr 28, 2022
arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

Andrej 671 Dec 31, 2022
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Will Thompson 166 Jan 4, 2023
A curated list of programmatic weak supervision papers and resources

A curated list of programmatic weak supervision papers and resources

Jieyu Zhang 118 Jan 2, 2023
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Agustinus Kristiadi 7k Jan 2, 2023
A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

null 857 Dec 29, 2022
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

OpenAI 2.9k Jan 4, 2023
BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis

Bilateral Denoising Diffusion Models (BDDMs) This is the official PyTorch implementation of the following paper: BDDM: BILATERAL DENOISING DIFFUSION M

null 172 Dec 23, 2022
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Thomas Neumann 117 Nov 27, 2022
Catch-all collection of generative art made using processing

Generative art with Processing.py Some art I have created for fun. Dependencies Processing for Python, see how to download/use here Packages contained

null 2 Mar 12, 2022
Learning Energy-Based Models by Diffusion Recovery Likelihood

Learning Energy-Based Models by Diffusion Recovery Likelihood Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma Paper: https://arxiv.o

Ruiqi Gao 41 Nov 22, 2022
This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

OpenAI 3k Dec 26, 2022
Official PyTorch implementation for FastDPM, a fast sampling algorithm for diffusion probabilistic models

Official PyTorch implementation for "On Fast Sampling of Diffusion Probabilistic Models". FastDPM generation on CIFAR-10, CelebA, and LSUN datasets. S

Zhifeng Kong 68 Dec 26, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models This repo contains code for DDPM training. Based on Denoising Diffusion Probabilistic Models, Improved Denois

Alexander Markov 7 Dec 15, 2022
Codebase for Diffusion Models Beat GANS on Image Synthesis.

Codebase for Diffusion Models Beat GANS on Image Synthesis.

Katherine Crowson 128 Dec 2, 2022
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral)

ILVR + ADM This is the implementation of ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral). This repository is h

Jooyoung Choi 225 Dec 28, 2022
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 7, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 4, 2023