Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Related tags

Deep Learning TP-Net
Overview

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul, Korea)

To download our paper, click here.

Introduction

This repository accompanies the paper "Flexible Networks for Learning Physical Dynamics of Deformable Objects", which is currenty under review for publication.
We release the code to train, test, and visualize the result of our model.
The implementation is based on python 3.6, tensorflow 2.3.0., CUDA 10.1, and cuDNN 7.6.1

How To Run

1. Configure Environment

pip install -r requirements.txt

2-1. Download Dataset
Download each dataset from the links below.

After downloading and unzipping each dataset, place each folder as below.

data/synthetic_dataset/preprocessed_data
data/real_world_dataset/preprocessed_data

2-2 (Alternative) Generating the entire Synthetic Dataset
Alternatively, you can generate the synthetic dataset from scratch by executing the following commands.
The entire process of generating the synthetic dataset takes a couple of hours and consumes approximately 12.43GB.

python3 box2d_simulator/simulator.py                     # generates raw point set data
python3 data/simulation/preprocess_code/preprocess.py    # preprocess data

3. Train
To train TP-Net with the parameters that we used for getting the best performance, execute the following command.
You can change the hyperparameters or other training options by changing config.py.

CUDA_VISIBLE_DEVICES=0 python3 train.py

4. Evaluate & Visualize
To evaluate the trained model on test cases, run

CUDA_VISIBLE_DEVICES=0 python3 ./evaluation/evaluate_synthetic.py --init_data_type=ordered
CUDA_VISIBLE_DEVICES=0 python3 ./evaluation/evaluate_real_world.py --init_data_type=unordered

To visualize the results, run

python3 ./evaluation/visualize_synthetic.py
python3 ./evaluation/visualize_real_world.py
You might also like...
Official PyTorch implementation of
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ

Digan - Official PyTorch implementation of Generating Videos with Dynamics-aware Implicit Generative Adversarial Networks
Digan - Official PyTorch implementation of Generating Videos with Dynamics-aware Implicit Generative Adversarial Networks

DIGAN (ICLR 2022) Official PyTorch implementation of "Generating Videos with Dyn

This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Deformable DETR is an efficient and fast-converging end-to-end object detector.
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021)

DPT This repo is the official implementation of DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021). We provide code and model

PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

PyTorch implementation of Deformable Convolution
PyTorch implementation of Deformable Convolution

PyTorch implementation of Deformable Convolution !!!Warning: There is some issues in this implementation and this repo is not maintained any more, ple

Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

MoCoPnet - Deformable 3D Convolution for Video Super-Resolution
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Comments
  • Bump tensorflow from 2.3.0 to 2.7.2

    Bump tensorflow from 2.3.0 to 2.7.2

    Bumps tensorflow from 2.3.0 to 2.7.2.

    Release notes

    Sourced from tensorflow's releases.

    TensorFlow 2.7.2

    Release 2.7.2

    This releases introduces several vulnerability fixes:

    TensorFlow 2.7.1

    Release 2.7.1

    This releases introduces several vulnerability fixes:

    • Fixes a floating point division by 0 when executing convolution operators (CVE-2022-21725)
    • Fixes a heap OOB read in shape inference for ReverseSequence (CVE-2022-21728)
    • Fixes a heap OOB access in Dequantize (CVE-2022-21726)
    • Fixes an integer overflow in shape inference for Dequantize (CVE-2022-21727)
    • Fixes a heap OOB access in FractionalAvgPoolGrad (CVE-2022-21730)
    • Fixes an overflow and divide by zero in UnravelIndex (CVE-2022-21729)
    • Fixes a type confusion in shape inference for ConcatV2 (CVE-2022-21731)
    • Fixes an OOM in ThreadPoolHandle (CVE-2022-21732)
    • Fixes an OOM due to integer overflow in StringNGrams (CVE-2022-21733)
    • Fixes more issues caused by incomplete validation in boosted trees code (CVE-2021-41208)
    • Fixes an integer overflows in most sparse component-wise ops (CVE-2022-23567)
    • Fixes an integer overflows in AddManySparseToTensorsMap (CVE-2022-23568)

    ... (truncated)

    Changelog

    Sourced from tensorflow's changelog.

    Release 2.7.2

    This releases introduces several vulnerability fixes:

    Release 2.6.4

    This releases introduces several vulnerability fixes:

    • Fixes a code injection in saved_model_cli (CVE-2022-29216)
    • Fixes a missing validation which causes TensorSummaryV2 to crash (CVE-2022-29193)
    • Fixes a missing validation which crashes QuantizeAndDequantizeV4Grad (CVE-2022-29192)
    • Fixes a missing validation which causes denial of service via DeleteSessionTensor (CVE-2022-29194)
    • Fixes a missing validation which causes denial of service via GetSessionTensor (CVE-2022-29191)
    • Fixes a missing validation which causes denial of service via StagePeek (CVE-2022-29195)
    • Fixes a missing validation which causes denial of service via UnsortedSegmentJoin (CVE-2022-29197)
    • Fixes a missing validation which causes denial of service via LoadAndRemapMatrix (CVE-2022-29199)
    • Fixes a missing validation which causes denial of service via SparseTensorToCSRSparseMatrix (CVE-2022-29198)
    • Fixes a missing validation which causes denial of service via LSTMBlockCell (CVE-2022-29200)
    • Fixes a missing validation which causes denial of service via Conv3DBackpropFilterV2 (CVE-2022-29196)
    • Fixes a CHECK failure in depthwise ops via overflows (CVE-2021-41197)
    • Fixes issues arising from undefined behavior stemming from users supplying invalid resource handles (CVE-2022-29207)
    • Fixes a segfault due to missing support for quantized types (CVE-2022-29205)
    • Fixes a missing validation which results in undefined behavior in SparseTensorDenseAdd (CVE-2022-29206)

    ... (truncated)

    Commits
    • dd7b8a3 Merge pull request #56034 from tensorflow-jenkins/relnotes-2.7.2-15779
    • 1e7d6ea Update RELEASE.md
    • 5085135 Merge pull request #56069 from tensorflow/mm-cp-52488e5072f6fe44411d70c6af09e...
    • adafb45 Merge pull request #56060 from yongtang:curl-7.83.1
    • 01cb1b8 Merge pull request #56038 from tensorflow-jenkins/version-numbers-2.7.2-4733
    • 8c90c2f Update version numbers to 2.7.2
    • 43f3cdc Update RELEASE.md
    • 98b0a48 Insert release notes place-fill
    • dfa5cf3 Merge pull request #56028 from tensorflow/disable-tests-on-r2.7
    • 501a65c Disable timing out tests
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
Owner
Jinhyung Park
∙Research Intern at the Computer Graphics Laboratory at Yonsei University
Jinhyung Park
A PyTorch implementation of Radio Transformer Networks from the paper "An Introduction to Deep Learning for the Physical Layer".

An Introduction to Deep Learning for the Physical Layer An usable PyTorch implementation of the noisy autoencoder infrastructure in the paper "An Intr

Gram.AI 120 Nov 21, 2022
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Bo Sun 132 Nov 28, 2022
The pytorch implementation of DG-Font: Deformable Generative Networks for Unsupervised Font Generation

DG-Font: Deformable Generative Networks for Unsupervised Font Generation The source code for 'DG-Font: Deformable Generative Networks for Unsupervised

null 130 Dec 5, 2022
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc

Rao Muhammad Umer 6 Nov 14, 2022
Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21

MonoFlex Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21. Work in progress. Installation This repo is tested w

Yunpeng 169 Dec 6, 2022
[CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment

RADN [CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment [Paper on arXiv] Overview Update [2021/5/7] add codes for W

IIGROUP 53 Dec 28, 2022
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

PabloPalafox 109 Nov 22, 2022
A multi-scale unsupervised learning for deformable image registration

A multi-scale unsupervised learning for deformable image registration Shuwei Shao, Zhongcai Pei, Weihai Chen, Wentao Zhu, Xingming Wu and Baochang Zha

ShuweiShao 2 Apr 13, 2022
Official Pytorch implementation of ICLR 2018 paper Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge.

Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge: Official Pytorch implementation of ICLR 2018 paper Deep Learning for Phy

emmanuel 47 Nov 6, 2022
FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack

FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack Case study of the FCA. The code can be find in FCA. Cas

IDRL 21 Dec 15, 2022