Federated Learning with Acceleration of Global Momentum
PyTorch implementation of federated learning framework based on the acceleration of global momentum.
Federated Learning with Acceleration of Global Momentum
Geeho Kim, Jinkyu Kim, Bohyung Han
1. Dependencies
This repository is implemented based on PyTorch with Anaconda.
2. Training models
CIFAR-100, 100 clients, Dirichlet (0.3) split, 5% participation
python federated_train.py --cuda_visible_device=1 --method=FedAGM --global_method=FedAGM --config=configs/cifar_actl2.yaml --arch=ResNet18 --weight_decay=1e-3 --gr_clipping_max_norm=10 --alpha=1 --mu=0.001 --gamma=0.9 --momentum=0.0 --tau 1.0 --lr=1e-1 --mode=dirichlet --dirichlet_alpha=0.3 --participation_rate=0.05 --learning_rate_decay 0.995 --set CIFAR100