GCN_LogsigRNN
This repository holds the codebase for the paper: Logsig-RNN: a novel network for robust and efficient skeleton-based action recognition Shujian Liao, Terry Lyons, Weixin Yang, Kevin Schlegel, and Hao Ni, BMVC 2021
Data Preprocessing
Directory Structure
Put downloaded data into the following directory structure:
- data/
- nturgbd_raw/
- nturgb+d_skeletons/ # from `nturgbd_skeletons_s001_to_s017.zip`
...
- nturgb+d_skeletons120/ # from `nturgbd_skeletons_s018_to_s032.zip`
...
- NTU_RGBD_samples_with_missing_skeletons.txt
- NTU_RGBD120_samples_with_missing_skeletons.txt
Generating Data
- NTU RGB+D 120
cd data_gen
python3 ntu120_gendata.py
Training & Testing
To train a new GCN-LogsigRNN model run:
python3 main.py --config ./config/ntu_sub/train_joint.yaml --device 0
- The model used is in
model/gcn_logsigRNN.py