This is a JAX implementation of Neural Radiance Fields for learning purposes.

Overview

learn-nerf

This is a JAX implementation of Neural Radiance Fields for learning purposes.

I've been curious about NeRF and its follow-up work for a while, but don't have much time to explore it. I learn best by doing, so I'll be implementing stuff here to try to get a feel for it.

Usage

The steps to using this codebase are as follows:

  1. Generate a dataset - run a simple Go program to turn any .stl 3D model into a series of rendered camera views with associated metadata.
  2. Train a model - install the Python dependencies and run the training script.
  3. Render a novel view - render a novel view of the object using a model.

Generating a dataset

I use a simple format for storing rendered views of the scene. Each frame is stored as a PNG file, and each PNG has an accompanying JSON file describing the camera view.

For easy experimentation, I created a Go program to render an arbitrary .stl file as a collection of views in the supported data format. To run this program, install Go and run go get . inside of simple_dataset/ to get the dependencies. Next, run

$ go run . /path/to/model.stl data_dir

This will create a directory data_dir containing rendered views of /path/to/model.stl.

Training a model

First, install the learn_nerf package by running pip install -e . inside this repository. You should separately make sure jax and Flax are installed in your environment.

The training script is learn_nerf/scripts/train_nerf.py. Here's an example of running this script:

python learn_nerf/scripts/train_nerf.py \
    --lr 1e-5 \
    --batch_size 1024 \
    --save_path model_weights.pkl \
    /path/to/data_dir

This will periodically save model weights to model_weights.pkl. The script may get stuck on training... while it shuffles the dataset and compiles the training graph. Wait a minute or two, and losses should start printing out as training ramps up.

If you get a Segmentation fault on CPU, this may be because you don't have enough memory to run batch size 1024--try something lower.

Render a novel view

To render a view from a trained NeRF model, use learn_nerf/scripts/render_nerf.py. Here's an example of the usage:

python learn_nerf/scripts/render_nerf.py \
    --batch_size 1024 \
    --model_path model_weights.pkl \
    --width 128 \
    --height 128 \
    /path/to/data_dir/0000.json \
    output.png

In the above example, we will render the camera view described by /path/to/data_dir/0000.json. Note that the camera view can be from the training set, but doesn't need to be as long as its in the correct JSON format.

You might also like...
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF implementation. Contact Jon Barron if you encounter any issues.

Code for KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs
Code for KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs

KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs Check out the paper on arXiv: https://arxiv.org/abs/2103.13744 This repo cont

Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

This repository contains the source code for the paper
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

BARF: Bundle-Adjusting Neural Radiance Fields 🤮 (ICCV 2021 oral)

BARF 🤮 : Bundle-Adjusting Neural Radiance Fields Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey IEEE International Conference on Comp

[ICCV21] Self-Calibrating Neural Radiance Fields
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

[ICCV 2021 Oral] NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo
[ICCV 2021 Oral] NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo

NerfingMVS Project Page | Paper | Video | Data NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo Yi Wei, Shaohui

This is the code for "HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields".

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields This is the code for "HyperNeRF: A Higher-Dimensional

 pixelNeRF: Neural Radiance Fields from One or Few Images
pixelNeRF: Neural Radiance Fields from One or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa UC Berkeley arXiv: http://arxiv.org/abs/2

Owner
Alex Nichol
Web developer, math geek, and AI enthusiast.
Alex Nichol
Pytorch implementation for A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose Paper | Website | Data A-NeRF: Articulated Neural Radiance F

Shih-Yang Su 172 Dec 22, 2022
Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis Abstract: This work targets at using a general deep lea

null 163 Dec 14, 2022
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

null 551 Dec 29, 2022
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 8, 2023
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 9, 2023
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 9, 2023
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Facebook Research 296 Dec 29, 2022
(Arxiv 2021) NeRF--: Neural Radiance Fields Without Known Camera Parameters

NeRF--: Neural Radiance Fields Without Known Camera Parameters Project Page | Arxiv | Colab Notebook | Data Zirui Wang¹, Shangzhe Wu², Weidi Xie², Min

Active Vision Laboratory 411 Dec 26, 2022