(pytorch) XXX@xxxxx:/DATA/XXX/DHCN$ python main.py --dataset Tmall --beta 0.02
Traceback (most recent call last):
File "main.py", line 5, in <module>
from util import Data, split_validation
ImportError: cannot import name 'Data' from 'util' (/DATA/XXX/DHCN/util.py)
(pytorch) XXX@cvpruser:/DATA/XXX/DHCN$ python main.py --dataset Tmall --beta 0.02
Namespace(batchSize=100, beta=0.02, dataset='Tmall', embSize=100, epoch=30, filter=False, l2=1e-05, layer=3, lr=0.001)
/home/XXX/anaconda3/envs/pytorch/lib/python3.8/site-packages/numpy/core/_asarray.py:102: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.
return array(a, dtype, copy=False, order=order)
-------------------------------------------------------
epoch: 0
start training: 2021-09-17 10:49:17.124433
Traceback (most recent call last):
File "main.py", line 71, in <module>
main()
File "main.py", line 53, in main
metrics, total_loss = train_test(model, train_data, test_data)
File "/DATA/XXX/DHCN/model.py", line 180, in train_test
targets, scores, con_loss = forward(model, i, train_data)
File "/DATA/XXX/DHCN/model.py", line 168, in forward
item_emb_hg, sess_emb_hgnn, con_loss = model(session_item, session_len, D_hat, A_hat, reversed_sess_item, mask)
File "/home/XXX/anaconda3/envs/pytorch/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File "/DATA/XXX/DHCN/model.py", line 153, in forward
session_emb_lg = self.LineGraph(self.embedding.weight, D, A, session_item, session_len)
File "/home/XXX/anaconda3/envs/pytorch/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File "/DATA/XXX/DHCN/model.py", line 75, in forward
session_emb_lgcn = np.sum(session, 0)
File "<__array_function__ internals>", line 5, in sum
File "/home/XXX/anaconda3/envs/pytorch/lib/python3.8/site-packages/numpy/core/fromnumeric.py", line 2247, in sum
return _wrapreduction(a, np.add, 'sum', axis, dtype, out, keepdims=keepdims,
File "/home/XXX/anaconda3/envs/pytorch/lib/python3.8/site-packages/numpy/core/fromnumeric.py", line 87, in _wrapreduction
return ufunc.reduce(obj, axis, dtype, out, **passkwargs)
File "/home/XXX/anaconda3/envs/pytorch/lib/python3.8/site-packages/torch/_tensor.py", line 643, in __array__
return self.numpy()
TypeError: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.