234 Repositories
Python Contrastive-Tension Libraries
SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning
SPCL SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning Update on 2021/11/25: ArXiv Ver
Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment".
#backdoor-HSIC (bd_HSIC) Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment". To generate
[CIKM 2021] Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning
Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. This repo contains the PyTorch code and implementation for the paper E
Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.
Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021 Abstract Recent works have made great success in semantic segmentation by explo
Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling".
PSSL Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling". It consists of the pre-tra
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning
DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi
Official Pytorch implementation of "DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network" (CVPR'21)
DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network Pytorch implementation for our DivCo. We propose a simple ye
Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning
MSVCL_MICCAI2021 Installation Please follow the instruction in pytorch-CycleGAN-and-pix2pix to install. Example Usage An example of vendor-styles tran
Video Corpus Moment Retrieval with Contrastive Learning (SIGIR 2021)
Video Corpus Moment Retrieval with Contrastive Learning PyTorch implementation for the paper "Video Corpus Moment Retrieval with Contrastive Learning"
Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contrastive Image Deraining"
SAPNet This repository contains the official Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contr
Contrastive Learning for Metagenomic Binning
CLMB A simple framework for CLMB - a novel deep Contrastive Learningfor Metagenomic Binning Created by Pengfei Zhang, senior of Department of Computer
Project page for our ICCV 2021 paper "The Way to my Heart is through Contrastive Learning"
The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video This is the official project page of our ICCV 2
Contrastive Feature Loss for Image Prediction
Contrastive Feature Loss for Image Prediction We provide a PyTorch implementation of our contrastive feature loss presented in: Contrastive Feature Lo
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].
CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R
Official implementation for "Image Quality Assessment using Contrastive Learning"
Image Quality Assessment using Contrastive Learning Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik This is the offi
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop
Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig
Pytorch implementation for the paper: Contrastive Learning for Cold-start Recommendation
Contrastive Learning for Cold-start Recommendation This is our Pytorch implementation for the paper: Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan L
TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning
TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning
[ICCV21] Official implementation of the "Social NCE: Contrastive Learning of Socially-aware Motion Representations" in PyTorch.
Social-NCE + CrowdNav Website | Paper | Video | Social NCE + Trajectron | Social NCE + STGCNN This is an official implementation for Social NCE: Contr
DetCo: Unsupervised Contrastive Learning for Object Detection
DetCo: Unsupervised Contrastive Learning for Object Detection arxiv link News Sparse RCNN+DetCo improves from 45.0 AP to 46.5 AP(+1.5) with 3x+ms trai
Parametric Contrastive Learning (ICCV2021)
Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos Implementation for "3D Human Pose, Shape and Texture from Low-Resoluti
Adversarial Graph Augmentation to Improve Graph Contrastive Learning
ADGCL : Adversarial Graph Augmentation to Improve Graph Contrastive Learning Introduction This repo contains the Pytorch [1] implementation of Adversa
Interpretable-contrastive-word-mover-s-embedding
Interpretable-contrastive-word-mover-s-embedding Paper Datasets Here is a Dropbox link to the datasets used in the paper: https://www.dropbox.com/sh/n
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”
Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in
PyTorch implementation for "Mining Latent Structures with Contrastive Modality Fusion for Multimedia Recommendation"
MIRCO PyTorch implementation for paper: Latent Structures Mining with Contrastive Modality Fusion for Multimedia Recommendation Dependencies Python 3.
Implementation for paper "Towards the Generalization of Contrastive Self-Supervised Learning"
Contrastive Self-Supervised Learning on CIFAR-10 Paper "Towards the Generalization of Contrastive Self-Supervised Learning", Weiran Huang, Mingyang Yi
Explaining neural decisions contrastively to alternative decisions.
Contrastive Explanations for Model Interpretability This is the repository for the paper "Contrastive Explanations for Model Interpretability", about
The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper.
Intermdiate layer matters - SSL The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper. Downl
Contrastive Learning with Non-Semantic Negatives
Contrastive Learning with Non-Semantic Negatives This repository is the official implementation of Robust Contrastive Learning Using Negative Samples
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).
NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti
An implementation for the loss function proposed in Decoupled Contrastive Loss paper.
Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021
Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con
Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)
Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning
Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.
MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).
Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular
Official code for the paper Inverse Problems Leveraging Pre-trained Contrastive Representations.
The official code for the paper "Inverse Problems Leveraging Pre-trained Contrastive Representations" (to appear in NeurIPS 2021).
[NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning
SoCo [NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning By Fangyun Wei*, Yue Gao*, Zhirong Wu, Han Hu,
[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.
[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,
Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"
Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N
EMNLP'2021: SimCSE: Simple Contrastive Learning of Sentence Embeddings
SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr
Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)
Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL) This repository contains all source code used to generate the results in the article "
CPC-big and k-means clustering for zero-resource speech processing
The CPC-big model and k-means checkpoints used in Analyzing Speaker Information in Self-Supervised Models to Improve Zero-Resource Speech Processing.
The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.
Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations
Creating Robust Representations from Pre-Trained Image Encoders using Contrastive Learning Sriram Ravula, Georgios Smyrnis This is the code for our pr
Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm
DeCLIP Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm. Our paper is available in arxiv Updates ** Ou
Code for Efficient Visual Pretraining with Contrastive Detection
Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff,
Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation.
DuoRec Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation. Usage Download datasets fr
The official implementation of the paper, "SubTab: Subsetting Features of Tabular Data for Self-Supervised Representation Learning"
SubTab: Author: Talip Ucar ([email protected]) The official implementation of the paper, SubTab: Subsetting Features of Tabular Data for Self-Supervis
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021
CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo
Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)
Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)
Supervised Contrastive Learning for Downstream Optimized Sequence Representations
SupCL-Seq 📖 Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext
Pytorch Implementation of "Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation"
CRL_EGPG Pytorch Implementation of Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation We use contrastive loss implemented b
TensorFlow Similarity is a python package focused on making similarity learning quick and easy.
TensorFlow Similarity is a python package focused on making similarity learning quick and easy.
Object-aware Contrastive Learning for Debiased Scene Representation
Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo
Official pytorch implementation of "Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization" ACMMM 2021 (Oral)
Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization This is an official implementation of "Feature Stylization and Domain-
A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21
ANEMONE A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21 Dependencies python==3.6.1 dgl==
Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers.
Contra-OOD Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers. Requirements PyTorch Transformers datasets
PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations
PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations
GeDML is an easy-to-use generalized deep metric learning library
GeDML is an easy-to-use generalized deep metric learning library
[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations
CrowdNav with Social-NCE This is an official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations by
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)
Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment
CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21
MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen
Korean Simple Contrastive Learning of Sentence Embeddings using SKT KoBERT and kakaobrain KorNLU dataset
KoSimCSE Korean Simple Contrastive Learning of Sentence Embeddings implementation using pytorch SimCSE Installation git clone https://github.com/BM-K/
Parametric Contrastive Learning (ICCV2021)
Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.
Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici
Contrastive Learning for Compact Single Image Dehazing, CVPR2021
AECR-Net Contrastive Learning for Compact Single Image Dehazing, CVPR2021. Official Pytorch based implementation. Paper arxiv Pytorch Version TODO: mo
Improving Contrastive Learning by Visualizing Feature Transformation, ICCV 2021 Oral
Improving Contrastive Learning by Visualizing Feature Transformation This project hosts the codes, models and visualization tools for the paper: Impro
Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021
Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021 The code for training mCOLT/mRASP2, a multilingua
PyGCL: Graph Contrastive Learning Library for PyTorch
PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL components from published papers, standardized evaluation, and experiment management.
Video Contrastive Learning with Global Context
Video Contrastive Learning with Global Context (VCLR) This is the official PyTorch implementation of our VCLR paper. Install dependencies environments
PyGCL: Graph Contrastive Learning Library for PyTorch
PyGCL: Graph Contrastive Learning for PyTorch PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL com
Run Effective Large Batch Contrastive Learning on Limited Memory GPU
Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr
Object-aware Contrastive Learning for Debiased Scene Representation
Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo
Spatial Contrastive Learning for Few-Shot Classification (SCL)
This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image classification in order to learn more general purpose embeddings, and facilitate the test-time adaptation to novel visual categories.
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"
DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa
The Noise Contrastive Estimation for softmax output written in Pytorch
An NCE implementation in pytorch About NCE Noise Contrastive Estimation (NCE) is an approximation method that is used to work around the huge computat
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation
This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on MSCOCO and Flickr30k, and visual grounding on RefCOCO+. Pre-trained and finetuned checkpoints are released.
official implemntation for "Contrastive Learning with Stronger Augmentations"
CLSA CLSA is a self-supervised learning methods which focused on the pattern learning from strong augmentations. Copyright (C) 2020 Xiao Wang, Guo-Jun
S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration (CVPR 2021)
S2-BNN (Self-supervised Binary Neural Networks Using Distillation Loss) This is the official pytorch implementation of our paper: "S2-BNN: Bridging th
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.
The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.
I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive constraining
I-SECRET This is the implementation of the MICCAI 2021 Paper "I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive con
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)
2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with
An official TensorFlow implementation of “CLCC: Contrastive Learning for Color Constancy” accepted at CVPR 2021.
CLCC: Contrastive Learning for Color Constancy (CVPR 2021) Yi-Chen Lo*, Chia-Che Chang*, Hsuan-Chao Chiu, Yu-Hao Huang, Chia-Ping Chen, Yu-Lin Chang,
Code in conjunction with the publication 'Contrastive Representation Learning for Hand Shape Estimation'
HanCo Dataset & Contrastive Representation Learning for Hand Shape Estimation Code in conjunction with the publication: Contrastive Representation Lea
Cross-Modal Contrastive Learning for Text-to-Image Generation
Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions
PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Representation
How to Reproduce our Results This repository contains PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Represen
Neighborhood Contrastive Learning for Novel Class Discovery
Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv
Pytorch implementation of Supporting Clustering with Contrastive Learning, NAACL 2021
Supporting Clustering with Contrastive Learning SCCL (NAACL 2021) Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ram
VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning
This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.
[ICML 2021] "Graph Contrastive Learning Automated" by Yuning You, Tianlong Chen, Yang Shen, Zhangyang Wang
Graph Contrastive Learning Automated PyTorch implementation for Graph Contrastive Learning Automated [talk] [poster] [appendix] Yuning You, Tianlong C
[ICML 2021] “ Self-Damaging Contrastive Learning”, Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang
Self-Damaging Contrastive Learning Introduction The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervis