6107 Repositories
Python From-Machine-Learning-Models-To-WebAPI Libraries
Formulae is a Python library that implements Wilkinson's formulas for mixed-effects models.
formulae formulae is a Python library that implements Wilkinson's formulas for mixed-effects models. The main difference with other implementations li
The projects lets you extract glossary words and their definitions from a given piece of text automatically using NLP techniques
Unsupervised technique to Glossary and Definition Extraction Code Files GPT2-DefinitionModel.ipynb - GPT-2 model for definition generation. Data_Gener
Predict an emoji that is associated with a text
Sentiment Analysis Sentiment analysis in computational linguistics is a general term for techniques that quantify sentiment or mood in a text. Can you
✔️ Visual, reactive testing library for Julia. Time machine included.
PlutoTest.jl (alpha release) Visual, reactive testing library for Julia A macro @test that you can use to verify your code's correctness. But instead
Convert onnx models to pytorch.
onnx2torch onnx2torch is an ONNX to PyTorch converter. Our converter: Is easy to use – Convert the ONNX model with the function call convert; Is easy
Telegram chatbot created with deep learning model (LSTM) and telebot library.
Telegram chatbot Telegram chatbot created with deep learning model (LSTM) and telebot library. Description This program will allow you to create very
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version
Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta
An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022
Dual Correlation Reduction Network An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022. Any
Improving Machine Translation Systems via Isotopic Replacement
CAT (Improving Machine Translation Systems via Isotopic Replacement) Machine translation plays an essential role in people’s daily international commu
The python SDK for Eto, the AI focused data platform for teams bringing AI models to production
Eto Labs Python SDK This is the python SDK for Eto, the AI focused data platform for teams bringing AI models to production. The python SDK makes it e
Joint learning of images and text via maximization of mutual information
mutual_info_img_txt Joint learning of images and text via maximization of mutual information. This repository incorporates the algorithms presented in
SPEAR: Semi suPErvised dAta progRamming
Semi-Supervised Data Programming for Data Efficient Machine Learning SPEAR is a library for data programming with semi-supervision. The package implem
Code for Temporally Abstract Partial Models
Code for Temporally Abstract Partial Models Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetar
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.
WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx
PantheonRL is a package for training and testing multi-agent reinforcement learning environments.
PantheonRL is a package for training and testing multi-agent reinforcement learning environments. PantheonRL supports cross-play, fine-tuning, ad-hoc coordination, and more.
Library to enable Bayesian active learning in your research or labeling work.
Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components
Experiments on continual learning from a stream of pretrained models.
Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification
Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.
Official code repository for Continual Learning In Environments With Polynomial Mixing Times
Official code for Continual Learning In Environments With Polynomial Mixing Times Continual Learning in Environments with Polynomial Mixing Times This
DeepDiffusion: Unsupervised Learning of Retrieval-adapted Representations via Diffusion-based Ranking on Latent Feature Manifold
DeepDiffusion Introduction This repository provides the code of the DeepDiffusion algorithm for unsupervised learning of retrieval-adapted representat
Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models.
Statutory Interpretation Data Set This repository contains the data set created for the following research papers: Savelka, Jaromir, and Kevin D. Ashl
Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop (SVRHM)
Self-Supervised Learning (SimCLR) with Biological Plausible Image Augmentations Official code base for the poster "On the use of Cortical Magnificatio
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab
AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode
A high-performance distributed deep learning system targeting large-scale and automated distributed training.
HETU Documentation | Examples Hetu is a high-performance distributed deep learning system targeting trillions of parameters DL model training, develop
Sleep staging from ECG, assisted with EEG
Sleep_Staging_Knowledge Distillation This codebase implements knowledge distillation approach for ECG based sleep staging assisted by EEG based sleep
Type4Py: Deep Similarity Learning-Based Type Inference for Python
Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ
A GitHub action that suggests type annotations for Python using machine learning.
Typilus: Suggest Python Type Annotations A GitHub action that suggests type annotations for Python using machine learning. This action makes suggestio
The OpenAPI Specification Repository
The OpenAPI Specification The OpenAPI Specification is a community-driven open specification within the OpenAPI Initiative, a Linux Foundation Collabo
AI4Good project for detecting waste in the environment
Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in
A powerful framework for decentralized federated learning with user-defined communication topology
Scatterbrained Decentralized Federated Learning Scatterbrained makes it easy to build federated learning systems. In addition to traditional federated
AdamW optimizer for bfloat16 models in pytorch.
Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo
Coursera learning course Python the basics. Programming exercises and tasks
HSE_Python_the_basics Welcome to BAsics programming Python! You’re joining thousands of learners currently enrolled in the course. I'm excited to have
Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images
Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images This repository contains the implementation of the following paper
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.
WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx
This is a graphql api build using ariadne python that serves a graphql-endpoint at port 3002 to perform language translation and identification using deep learning in python pytorch.
Language Translation and Identification this machine/deep learning api that will be served as a graphql-api using ariadne, to perform the following ta
Implementation of parameterized soft-exponential activation function.
Soft-Exponential-Activation-Function: Implementation of parameterized soft-exponential activation function. In this implementation, the parameters are
Self-Supervised Learning
Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t
MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine Learning work with thousands of other users.
The collaboration platform for Machine Learning MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine
A python interface for training Reinforcement Learning bots to battle on pokemon showdown
The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru
A lightweight, pure-Python mobile robot simulator designed for experiments in Artificial Intelligence (AI) and Machine Learning, especially for Jupyter Notebooks
aitk.robots A lightweight Python robot simulator for JupyterLab, Notebooks, and other Python environments. Goals A lightweight mobile robotics simulat
Predicting Baseball Metric Clusters: Clustering Application in Python Using scikit-learn
Clustering Clustering Application in Python Using scikit-learn This repository contains the prediction of baseball metric clusters using MLB Statcast
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).
PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear
Official implementation of the paper "Backdoor Attacks on Self-Supervised Learning".
SSL-Backdoor Abstract Large-scale unlabeled data has allowed recent progress in self-supervised learning methods that learn rich visual representation
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.
Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts
DataSelection-NMT Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts Quick update: The paper got accepted o
Learning with Subset Stacking
Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given
Implementation of "Semi-supervised Domain Adaptive Structure Learning"
Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo
These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations"
Few-shot-NLEs These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations". You can find the smal
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.
Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are
Twin-deep neural network for semi-supervised learning of materials properties
Deep Semi-Supervised Teacher-Student Material Synthesizability Prediction Citation: Semi-supervised teacher-student deep neural network for materials
FinRLÂ-Meta: A Universe for DataÂ-Driven Financial Reinforcement Learning. 🔥
FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users
Centroid-UNet is deep neural network model to detect centroids from satellite images.
Centroid UNet - Locating Object Centroids in Aerial/Serial Images Introduction Centroid-UNet is deep neural network model to detect centroids from Aer
Semantically Contrastive Learning for Low-light Image Enhancement
Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig
Hypernetwork-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels
Hypernet-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels The implementation of Hypernet-Ensemble Le
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity Introduction The 3D LiDAR place recognition aim
CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability
This is the official repository of the paper: CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability A private copy of the
The code of "Dependency Learning for Legal Judgment Prediction with a Unified Text-to-Text Transformer".
Code data_preprocess.py: preprocess data for Dependent-T5. parameters.py: define parameters of Dependent-T5. train_tools.py: traning and evaluation co
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".
Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S
Active learning for Mask R-CNN in Detectron2
MaskAL - Active learning for Mask R-CNN in Detectron2 Summary MaskAL is an active learning framework that automatically selects the most-informative i
Integrate GraphQL with your Pydantic models
graphene-pydantic A Pydantic integration for Graphene. Installation pip install "graphene-pydantic" Examples Here is a simple Pydantic model: import u
A simple way to demo Flask apps from your machine.
flask-ngrok A simple way to demo Flask apps from your machine. Makes your Flask apps running on localhost available over the internet via the excellen
PyG (PyTorch Geometric) - A library built upon PyTorch to easily write and train Graph Neural Networks (GNNs)
PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.
A repository with exploration into using transformers to predict DNA ↔ transcription factor binding
Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc
Using image super resolution models with vapoursynth and speeding them up with TensorRT
vs-RealEsrganAnime-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Also a docker image since
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"
Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics @WIFS2021 (Montpellier, France) Rony Abecidan, Vincent Itier, Jeremie Boulan
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"
CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt
A PyTorch implementation of deep-learning-based registration
DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0
Code for paper: "Spinning Language Models for Propaganda-As-A-Service"
Spinning Language Models for Propaganda-As-A-Service This is the source code for the Arxiv version of the paper. You can use this Google Colab to expl
Code for the paper "Learning-Augmented Algorithms for Online Steiner Tree"
Learning-Augmented Algorithms for Online Steiner Tree This is the code for the paper "Learning-Augmented Algorithms for Online Steiner Tree". Requirem
Code basis for the paper "Camera Condition Monitoring and Readjustment by means of Noise and Blur" (2021)
Camera Condition Monitoring and Readjustment by means of Noise and Blur This repository contains the source code of the paper: Wischow, M., Gallego, G
Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022)
Blockwise Sequential Model Learning Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022) For ins
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.
TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t
Pydantic models for pywttr and aiopywttr.
Pydantic models for pywttr and aiopywttr.
A minimal, standalone viewer for 3D animations stored as stop-motion sequences of individual .obj mesh files.
ObjSequenceViewer V0.5 A minimal, standalone viewer for 3D animations stored as stop-motion sequences of individual .obj mesh files. Installation: pip
PyTorch implementation of normalizing flow models
PyTorch implementation of normalizing flow models
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts
t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that
How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work
Deep Q-Learning Recommend papers The first step is to read and understand the method that you will implement. It was first introduced in a 2013 paper
A PyTorch library and evaluation platform for end-to-end compression research
CompressAI CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research. CompressAI currently provides: c
Jiminy, fast and portable Python/C++ simulator of poly-articulated systems with OpenAI Gym interface for reinforcement learning.
Jiminy is a fast and portable cross-platform open-source simulator for poly-articulated systems. It was built with two ideas in mind: provide a fast y
PyAbsorp is a python module that has the main focus to help estimate the Sound Absorption Coefficient.
This is a package developed to be use to find the Sound Absorption Coefficient through some implemented models, like Biot-Allard, Johnson-Champoux and
Persistent, stale-free, local and cross-machine caching for Python functions.
Persistent, stale-free, local and cross-machine caching for Python functions.
SeqAttack: a framework for adversarial attacks on token classification models
A framework for adversarial attacks against token classification models
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"
Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all
1st Solution For NeurIPS 2021 Competition on ML4CO Dual Task
KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a
Users can free try their models on SIDD dataset based on this code
SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.
PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle
A `Neural = Symbolic` framework for sound and complete weighted real-value logic
Logical Neural Networks LNNs are a novel Neuro = symbolic framework designed to seamlessly provide key properties of both neural nets (learning) and s
Official implementation of the AAAI 2022 paper "Learning Token-based Representation for Image Retrieval"
Token: Token-based Representation for Image Retrieval PyTorch training code for Token-based Representation for Image Retrieval. We propose a joint loc
easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.
easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases, and capable of utilizing different hardware options with no code changes required.
A system for quickly generating training data with weak supervision
Programmatically Build and Manage Training Data Announcement The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI applicat
Synthetic Data Generation for tabular, relational and time series data.
An Open Source Project from the Data to AI Lab, at MIT Website: https://sdv.dev Documentation: https://sdv.dev/SDV User Guides Developer Guides Github
Flexible HDF5 saving/loading and other data science tools from the University of Chicago
deepdish Flexible HDF5 saving/loading and other data science tools from the University of Chicago. This repository also host a Deep Learning blog: htt
Official code of IterMVS
IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear
An efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning"
MMGEN-FaceStylor English | 简体ä¸ć–‡ Introduction This repo is an efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits
Code for ShadeGAN (NeurIPS2021) A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Project Page | Paper A Shading-Guided Generative Implicit Model
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)
Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)
On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"