4624 Repositories
Python deep-forecast-pytorch Libraries
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.
A few Windows specific scripts for PyTorch
It is a repo that contains scripts that makes using PyTorch on Windows easier. Easy Installation Update: Starting from 0.4.0, you can go to the offici
Code snippets created for the PyTorch discussion board
PyTorch misc Collection of code snippets I've written for the PyTorch discussion board. All scripts were testes using the PyTorch 1.0 preview and torc
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.
Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat
A very simple and small path tracer written in pytorch meant to be run on the GPU
MentisOculi Pytorch Path Tracer A very simple and small path tracer written in pytorch meant to be run on the GPU Why use pytorch and not some other c
ocaml-torch provides some ocaml bindings for the PyTorch tensor library.
ocaml-torch provides some ocaml bindings for the PyTorch tensor library. This brings to OCaml NumPy-like tensor computations with GPU acceleration and tape-based automatic differentiation.
Example repository for custom C++/CUDA operators for TorchScript
Custom TorchScript Operators Example This repository contains examples for writing, compiling and using custom TorchScript operators. See here for the
PyTorch 1.0 inference in C++ on Windows10 platforms
Serving PyTorch Models in C++ on Windows10 platforms How to use Prepare Data examples/data/train/ - 0 - 1 . . . - n examples/data/test/
Serving PyTorch 1.0 Models as a Web Server in C++
Serving PyTorch Models in C++ This repository contains various examples to perform inference using PyTorch C++ API. Run git clone https://github.com/W
Rust bindings for the C++ api of PyTorch.
tch-rs Rust bindings for the C++ api of PyTorch. The goal of the tch crate is to provide some thin wrappers around the C++ PyTorch api (a.k.a. libtorc
.NET bindings for the Pytorch engine
TorchSharp TorchSharp is a .NET library that provides access to the library that powers PyTorch. It is a work in progress, but already provides a .NET
🛠 All-in-one web-based IDE specialized for machine learning and data science.
All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu
An unofficial styleguide and best practices summary for PyTorch
A PyTorch Tools, best practices & Styleguide This is not an official style guide for PyTorch. This document summarizes best practices from more than a
Official PyTorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation
UACANet: Uncertainty Aware Context Attention for Polyp Segmentation Official pytorch implementation of UACANet: Uncertainty Aware Context Attention fo
An AI Assistant More Than a Toolkit
tymon An AI Assistant More Than a Toolkit The reason for creating framework tymon is simple. making AI more like an assistant, helping us to complete
Real-time multi-object tracker using YOLO v5 and deep sort
This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of object detection architectures and models pretrained on the COCO dataset, are passed to a Deep Sort algorithm which tracks the objects. It can track any object that your Yolov5 model was trained to detect.
RetinaFace: Deep Face Detection Library in TensorFlow for Python
RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.
MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI.
MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI. It is an open-source and easy-to-install ecosystem that can run locally on a machine with one or two GPUs. Both server and client work on the same/different machine. However, initial support for multiple users is restricted. It shares the same principles with MONAI.
A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.
A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.
PyTorch implementation of Densely Connected Time Delay Neural Network
Densely Connected Time Delay Neural Network PyTorch implementation of Densely Connected Time Delay Neural Network (D-TDNN) in our paper "Densely Conne
This is the unofficial code of Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes. which achieve state-of-the-art trade-off between accuracy and speed on cityscapes and camvid, without using inference acceleration and extra data
Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes Introduction This is the unofficial code of Deep Dual-re
Deep Learning and Logical Reasoning from Data and Knowledge
Logic Tensor Networks (LTN) Logic Tensor Network (LTN) is a neurosymbolic framework that supports querying, learning and reasoning with both rich data
Pytorch version of VidLanKD: Improving Language Understanding viaVideo-Distilled Knowledge Transfer
VidLanKD Implementation of VidLanKD: Improving Language Understanding via Video-Distilled Knowledge Transfer by Zineng Tang, Jaemin Cho, Hao Tan, Mohi
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted
NU-Wave — Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution
TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to
Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)
Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets This is the official PyTorch implementation for the paper Rapid Neural A
CL-Gym: Full-Featured PyTorch Library for Continual Learning
CL-Gym: Full-Featured PyTorch Library for Continual Learning CL-Gym is a small yet very flexible library for continual learning research and developme
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.
REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05
Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.
IAug_CDNet Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. Overview We propose a
A PyTorch-based open-source framework that provides methods for improving the weakly annotated data and allows researchers to efficiently develop and compare their own methods.
Knodle (Knowledge-supervised Deep Learning Framework) - a new framework for weak supervision with neural networks. It provides a modularization for se
This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in Eurographics 2021
Deep-Detail-Enhancement-for-Any-Garment Introduction This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in
DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms
DI-HPC: Decision Intelligence - High Performance Computation DI-HPC is an acceleration operator component for general algorithm modules in reinforceme
Fast sparse deep learning on CPUs
SPARSEDNN **If you want to use this repo, please send me an email: [email protected], or raise a Github issue. ** Fast sparse deep learning on CPUs
PyTorch wrapper for Taichi data-oriented class
Stannum PyTorch wrapper for Taichi data-oriented class PRs are welcomed, please see TODOs. Usage from stannum import Tin import torch data_oriented =
Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch
alias-free-gan-pytorch Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) This implementation
Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis
MLP Singer Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis. Audio samples are available on our demo page.
这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer
Time Series Research with Torch 这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer。 建立原因 相较于mxnet和TF,Torch框架中的神经网络层需要提前指定输入维度: # 建立线性层 TensorF
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.
Selective Wavelet Attention Learning for Single Image Deraining
SWAL Code for Paper "Selective Wavelet Attention Learning for Single Image Deraining" Prerequisites Python 3 PyTorch Models We provide the models trai
Recognize Handwritten Digits using Deep Learning on the browser itself.
MNIST on the Web An attempt to predict MNIST handwritten digits from my PyTorch model from the browser (client-side) and not from the server, with the
WAGMA-SGD is a decentralized asynchronous SGD for distributed deep learning training based on model averaging.
WAGMA-SGD is a decentralized asynchronous SGD based on wait-avoiding group model averaging. The synchronization is relaxed by making the collectives externally-triggerable, namely, a collective can be initiated without requiring that all the processes enter it. It partially reduces the data within non-overlapping groups of process, improving the parallel scalability.
Heimdall watchtower automatically sends you emails to notify you of the latest progress of your deep learning programs.
This software automatically sends you emails to notify you of the latest progress of your deep learning programs.
Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.
Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.
Spectral Tensor Train Parameterization of Deep Learning Layers
Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.
The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.
PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021.
GCResNet PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021. The code will
imbalanced-DL: Deep Imbalanced Learning in Python
imbalanced-DL: Deep Imbalanced Learning in Python Overview imbalanced-DL (imported as imbalanceddl) is a Python package designed to make deep imbalanc
This is my reading list for my PhD in AI, NLP, Deep Learning and more.
This is my reading list for my PhD in AI, NLP, Deep Learning and more.
TensorRT examples (Jetson, Python/C++)(object detection)
TensorRT examples (Jetson, Python/C++)(object detection)
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)
2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"
RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".
Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ
Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge
Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I
Large dataset storage format for Pytorch
H5Record Large dataset ( 100G, = 1T) storage format for Pytorch (wip) Support python 3 pip install h5record Why? Writing large dataset is still a
Distributed DataLoader For Pytorch Based On Ray
Dpex——用户无感知分布式数据预处理组件 一、前言 随着GPU与CPU的算力差距越来越大以及模型训练时的预处理Pipeline变得越来越复杂,CPU部分的数据预处理已经逐渐成为了模型训练的瓶颈所在,这导致单机的GPU配置的提升并不能带来期望的线性加速。预处理性能瓶颈的本质在于每个GPU能够使用的C
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.
Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. 🔥
Global Filter Networks for Image Classification
Global Filter Networks for Image Classification Created by Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, Jie Zhou This repository contains PyTorch
Code implementation of Data Efficient Stagewise Knowledge Distillation paper.
Data Efficient Stagewise Knowledge Distillation Table of Contents Data Efficient Stagewise Knowledge Distillation Table of Contents Requirements Image
Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020
Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020) Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, A
This package contains deep learning models and related scripts for RoseTTAFold
RoseTTAFold This package contains deep learning models and related scripts to run RoseTTAFold This repository is the official implementation of RoseTT
DFM: A Performance Baseline for Deep Feature Matching
DFM: A Performance Baseline for Deep Feature Matching Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baselin
【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal
From Rain Generation to Rain Removal (CVPR2021) Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng [PDF&&Supplementary Material]
An official TensorFlow implementation of “CLCC: Contrastive Learning for Color Constancy” accepted at CVPR 2021.
CLCC: Contrastive Learning for Color Constancy (CVPR 2021) Yi-Chen Lo*, Chia-Che Chang*, Hsuan-Chao Chiu, Yu-Hao Huang, Chia-Ping Chen, Yu-Lin Chang,
Implementation and replication of ProGen, Language Modeling for Protein Generation, in Jax
ProGen - (wip) Implementation and replication of ProGen, Language Modeling for Protein Generation, in Pytorch and Jax (the weights will be made easily
PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis
FastPitchFormant - PyTorch Implementation PyTorch Implementation of FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis. Qu
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.
LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ
[CVPR 2021] Pytorch implementation of Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs
Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs In this work, we propose a framework HijackGAN, which enables non-linear latent space travers
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]
Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi
Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback
CoSMo.pytorch Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback, Seungmin Lee*, Dongwan Kim*, Bohyung
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”
Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima
This is the pytorch code for the paper Curious Representation Learning for Embodied Intelligence.
Curious Representation Learning for Embodied Intelligence This is the pytorch code for the paper Curious Representation Learning for Embodied Intellig
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing
一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。
一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。
Huggingface Transformers + Adapters = ❤️
adapter-transformers A friendly fork of HuggingFace's Transformers, adding Adapters to PyTorch language models adapter-transformers is an extension of
Flexible interface for high-performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra.
Flexible interface for high performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra. What is Lightning Tran
Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2
Graph Transformer - Pytorch Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2. This was recently used by bot
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021
Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label
Implementation of the GBST block from the Charformer paper, in Pytorch
Charformer - Pytorch Implementation of the GBST (gradient-based subword tokenization) module from the Charformer paper, in Pytorch. The paper proposes
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.
A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.
PyTorch impelementations of BERT-based Spelling Error Correction Models
PyTorch impelementations of BERT-based Spelling Error Correction Models
PyTorch impelementations of BERT-based Spelling Error Correction Models.
PyTorch impelementations of BERT-based Spelling Error Correction Models. 基于BERT的文本纠错模型,使用PyTorch实现。
Deep Learning Models for Causal Inference
Extensive tutorials for learning how to build deep learning models for causal inference using selection on observables in Tensorflow 2.
ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms
ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms, including but not limited to click-through-rate (CTR) prediction, learning-to-ranking (LTR), and Matrix/Tensor Embedding. The project objective is to develop a ecosystem to experiment, share, reproduce, and deploy in real world in a smooth and easy way (Hope it can be done).
A data preprocessing package for time series data. Design for machine learning and deep learning.
A data preprocessing package for time series data. Design for machine learning and deep learning.
This is a template for the Non-autoregressive Deep Learning-Based TTS model (in PyTorch).
Non-autoregressive Deep Learning-Based TTS Template This is a template for the Non-autoregressive TTS model. It contains Data Preprocessing Pipeline D
nnDetection is a self-configuring framework for 3D (volumetric) medical object detection which can be applied to new data sets without manual intervention. It includes guides for 12 data sets that were used to develop and evaluate the performance of the proposed method.
What is nnDetection? Simultaneous localisation and categorization of objects in medical images, also referred to as medical object detection, is of hi
PyTorch implementation HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections
HoroPCA This code is the official PyTorch implementation of the ICML 2021 paper: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projec
CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)
CLIP (Contrastive Language–Image Pre-training) Experiments (Evaluation) Model Dataset Acc (%) ViT-B/32 (Paper) CIFAR100 65.1 ViT-B/32 (Our) CIFAR100 6
This repo is a PyTorch implementation for Paper "Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds"
Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds This repository is a PyTorch implementation for paper: Uns
Code release of paper "Deep Multi-View Stereo gone wild"
Deep MVS gone wild Pytorch implementation of "Deep MVS gone wild" (Paper | website) This repository provides the code to reproduce the experiments of
Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data
SEDE SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description
Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021
SNN_Calibration Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021 Feature Comparison of SNN calibration: Features SNN Direct Tr
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".
AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio
LibTraffic is a unified, flexible and comprehensive traffic prediction library based on PyTorch
LibTraffic is a unified, flexible and comprehensive traffic prediction library, which provides researchers with a credibly experimental tool and a convenient development framework. Our library is implemented based on PyTorch, and includes all the necessary steps or components related to traffic prediction into a systematic pipeline.
30 Days Of Machine Learning Using Pytorch
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
Pytorch implementation of Nueral Style transfer
Nueral Style Transfer Pytorch implementation of Nueral style transfer algorithm , it is used to apply artistic styles to content images . Content is t
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA
Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch
中文无监督SimCSE Pytorch实现
A PyTorch implementation of unsupervised SimCSE SimCSE: Simple Contrastive Learning of Sentence Embeddings 1. 用法 无监督训练 python train_unsup.py ./data/ne
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch