272 Repositories
Python document-embeddings Libraries
Learning Logic Rules for Document-Level Relation Extraction
LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip
Self-Supervised Document-to-Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference
Self-Supervised Document Similarity Ranking (SDR) via Contextualized Language Models and Hierarchical Inference This repo is the implementation for SD
Switch spaces for knowledge graph embeddings
SwisE Switch spaces for knowledge graph embeddings. Requirements: python3 pytorch numpy tqdm Reproduce the results To reproduce the reported results,
Exploring dimension-reduced embeddings
sleepwalk Exploring dimension-reduced embeddings This is the code repository. See here for the Sleepwalk web page. License and disclaimer This program
A fast, efficient universal vector embedding utility package.
Magnitude: a fast, simple vector embedding utility library A feature-packed Python package and vector storage file format for utilizing vector embeddi
Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP"
DiLBERT Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP" Pretrained Model The pretrained model presented in the paper is
Detectron2 for Document Layout Analysis
Detectron2 trained on PubLayNet dataset This repo contains the training configurations, code and trained models trained on PubLayNet dataset using Det
Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".
Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".
AI-powered literature discovery and review engine for medical/scientific papers
AI-powered literature discovery and review engine for medical/scientific papers paperai is an AI-powered literature discovery and review engine for me
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)
DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).
Spanish Language Models 💃🏻 A repository part of the MarIA project. Corpora 📃 Corpora Number of documents Number of tokens Size (GB) BNE 201,080,084
This is the code used in the paper "Entity Embeddings of Categorical Variables".
This is the code used in the paper "Entity Embeddings of Categorical Variables". If you want to get the original version of the code used for the Kagg
TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL, and utterance id
TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL
Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings
Text2Music Emotion Embedding Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings Reference Emotion Embedding Spaces for Matching
This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text.
Text Summarizer This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text. Team Members This mini-project was
Code repository for EMNLP 2021 paper 'Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods'
Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods This is the code repository to accompany the EMNLP 2021 paper on ad
Document blur detection based on Laplacian operator and text detection.
Document Blur Detection For general blurred image, using the variance of Laplacian operator is a good solution. But as for the blur detection of docum
🌸 fastText + Bloom embeddings for compact, full-coverage vectors with spaCy
floret: fastText + Bloom embeddings for compact, full-coverage vectors with spaCy floret is an extended version of fastText that can produce word repr
Python-based tools for document analysis and OCR
ocropy OCRopus is a collection of document analysis programs, not a turn-key OCR system. In order to apply it to your documents, you may need to do so
gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions
gtfs2vec This is a companion repository for a gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions publication. Vis
A document scanner application for laptops/desktops developed using python, Tkinter and OpenCV.
DcoumentScanner A document scanner application for laptops/desktops developed using python, Tkinter and OpenCV. Directly install the .exe file to inst
The code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs. Zhanqiu Zhang, Jie Wang, Jiajun Chen, Shuiwang Ji, Feng Wu. NeurIPS 2021.
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl
A PyTorch implementation of unsupervised SimCSE
A PyTorch implementation of unsupervised SimCSE
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl
Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.
Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.
Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation
Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation Official Code Repository for the paper "Unsupervised Documen
Generate custom detailed survey paper with topic clustered sections and proper citations, from just a single query in just under 30 mins !!
Auto-Research A no-code utility to generate a detailed well-cited survey with topic clustered sections (draft paper format) and other interesting arti
Language Models for the legal domain in Spanish done @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).
Spanish legal domain Language Model ⚖️ This repository contains the page for two main resources for the Spanish legal domain: A RoBERTa model: https:/
Table automatically extraction from PDF Document
PDF Table Extractor Table automatically extraction from PDF Document Our Icon 📌 Name : PDF Table Extractor 📌 Authors : Minku Koo Jiyong Park 📌 Deve
Key information extraction from invoice document with Graph Convolution Network
Key Information Extraction from Scanned Invoices Key information extraction from invoice document with Graph Convolution Network Related blog post fro
Bootstrapped Unsupervised Sentence Representation Learning (ACL 2021)
Install first pip3 install -e . Training python3 training/unsupervised_tuning.py python3 training/supervised_tuning.py python3 training/multilingual_
Code for reproducing our paper: LMSOC: An Approach for Socially Sensitive Pretraining
LMSOC: An Approach for Socially Sensitive Pretraining Code for reproducing the paper LMSOC: An Approach for Socially Sensitive Pretraining to appear a
A Word Level Transformer layer based on PyTorch and 🤗 Transformers.
Transformer Embedder A Word Level Transformer layer based on PyTorch and 🤗 Transformers. How to use Install the library from PyPI: pip install transf
PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks
Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization
PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks
Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.
Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create
EMNLP'2021: SimCSE: Simple Contrastive Learning of Sentence Embeddings
SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization
PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".
Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users
Code for ICML2019 Paper "Compositional Invariance Constraints for Graph Embeddings"
Dependencies NOTE: This code has been updated, if you were using this repo earlier and experienced issues that was due to an outaded codebase. Please
Styled Handwritten Text Generation with Transformers (ICCV 21)
⚡ Handwriting Transformers [PDF] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz Khan & Mubarak Shah Abstract: We
Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.
Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations
Creating Robust Representations from Pre-Trained Image Encoders using Contrastive Learning Sriram Ravula, Georgios Smyrnis This is the code for our pr
A cross-document event and entity coreference resolution system, trained and evaluated on the ECB+ corpus.
A Comprehensive Comparison of Word Embeddings in Event & Entity Coreference Resolution. Introduction This repo contains experimental code derived from
BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia.
BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia. Its intended use is as input for neural models in natural language processing.
Docbarcodes extracts 1D and 2D barcodes from scanned PDF documents or images. It can be used to automate extraction and processing of all kind of documents.
Intro Barcodes are being used in many documents or forms to enable machine reading capabilities and reduce manual processing effort. Simple 1D barcode
An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.
An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.
Document Web APIs made with Django Rest Framework
DRF Docs Document Web APIs made with Django Rest Framework. View Demo Contributors Wanted: Do you like this project? Using it? Let's make it better! S
Mayan EDMS is a document management system.
Mayan EDMS is a document management system. Its main purpose is to store, introspect, and categorize files, with a strong emphasis on preserving the contextual and business information of documents. It can also OCR, preview, label, sign, send, and receive thoses files.
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch
Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo
docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.
docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.
A Structured Self-attentive Sentence Embedding
Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR
Convolutional 2D Knowledge Graph Embeddings resources
ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"
Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations
Original implementation of the pooling method introduced in "Speaker embeddings by modeling channel-wise correlations"
Speaker-Embeddings-Correlation-Pooling This is the original implementation of the pooling method introduced in "Speaker embeddings by modeling channel
Applying "Load What You Need: Smaller Versions of Multilingual BERT" to LaBSE
smaller-LaBSE LaBSE(Language-agnostic BERT Sentence Embedding) is a very good method to get sentence embeddings across languages. But it is hard to fi
The project is investigating methods to extract human-marked data from document forms such as surveys and tests.
The project is investigating methods to extract human-marked data from document forms such as surveys and tests. They can read questions, multiple-choice exam papers, and grade.
Embeddinghub is a database built for machine learning embeddings.
Embeddinghub is a database built for machine learning embeddings.
CDLA: A Chinese document layout analysis (CDLA) dataset
CDLA: A Chinese document layout analysis (CDLA) dataset 介绍 CDLA是一个中文文档版面分析数据集,面向中文文献类(论文)场景。包含以下10个label: 正文 标题 图片 图片标题 表格 表格标题 页眉 页脚 注释 公式 Text Title
NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking
pretrain4ir_tutorial NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking 用作NLPIR实验室, Pre-training
UniLM AI - Large-scale Self-supervised Pre-training across Tasks, Languages, and Modalities
Pre-trained (foundation) models across tasks (understanding, generation and translation), languages (100+ languages), and modalities (language, image, audio, vision + language, audio + language, etc.)
This repository contains the official release of the model "BanglaBERT" and associated downstream finetuning code and datasets introduced in the paper titled "BanglaBERT: Combating Embedding Barrier in Multilingual Models for Low-Resource Language Understanding".
BanglaBERT This repository contains the official release of the model "BanglaBERT" and associated downstream finetuning code and datasets introduced i
🍊 PAUSE (Positive and Annealed Unlabeled Sentence Embedding), accepted by EMNLP'2021 🌴
PAUSE: Positive and Annealed Unlabeled Sentence Embedding Sentence embedding refers to a set of effective and versatile techniques for converting raw
Document processing using transformers
Doc Transformers Document processing using transformers. This is still in developmental phase, currently supports only extraction of form data i.e (ke
txtai executes machine-learning workflows to transform data and build AI-powered semantic search applications.
txtai executes machine-learning workflows to transform data and build AI-powered semantic search applications.
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"
Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings
Korean Simple Contrastive Learning of Sentence Embeddings using SKT KoBERT and kakaobrain KorNLU dataset
KoSimCSE Korean Simple Contrastive Learning of Sentence Embeddings implementation using pytorch SimCSE Installation git clone https://github.com/BM-K/
Learning Compatible Embeddings, ICCV 2021
LCE Learning Compatible Embeddings, ICCV 2021 by Qiang Meng, Chixiang Zhang, Xiaoqiang Xu and Feng Zhou Paper: Arxiv We cannot release source codes pu
Large scale embeddings on a single machine.
Marius Marius is a system under active development for training embeddings for large-scale graphs on a single machine. Training on large scale graphs
Genalog is an open source, cross-platform python package allowing generation of synthetic document images with custom degradations and text alignment capabilities.
Genalog is an open source, cross-platform python package allowing generation of synthetic document images with custom degradations and text alignment capabilities.
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)
Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada
Versatile Generative Language Model
Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"
Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations
Convolutional 2D Knowledge Graph Embeddings resources
ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes
A Structured Self-attentive Sentence Embedding
Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR
organize - The file management automation tool
organize - The file management automation tool
REST API for sentence tokenization and embedding using Multilingual Universal Sentence Encoder.
MUSE stands for Multilingual Universal Sentence Encoder - multilingual extension (supports 16 languages) of Universal Sentence Encoder (USE).
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).
Attention Walk ⠀⠀ A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).
Spanish Language Models 💃🏻 Corpora 📃 Corpora Number of documents Size (GB) BNE 201,080,084 570GB Models 🤖 RoBERTa-base BNE: https://huggingface.co
Command line program to download documents from web portals.
command line document download made easy Highlights list available documents in json format or download them filter documents using string matching re
DRIFT is a tool for Diachronic Analysis of Scientific Literature.
About DRIFT is a tool for Diachronic Analysis of Scientific Literature. The application offers user-friendly and customizable utilities for two modes:
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network
Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch
Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional
Code and dataset for ACL2018 paper "Exploiting Document Knowledge for Aspect-level Sentiment Classification"
Aspect-level Sentiment Classification Code and dataset for ACL2018 [paper] ‘‘Exploiting Document Knowledge for Aspect-level Sentiment Classification’’
🤖 A Python library for learning and evaluating knowledge graph embeddings
PyKEEN PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-m
SDL: Synthetic Document Layout dataset
SDL is the project that synthesizes document images. It facilitates multiple-level labeling on document images and can generate in multiple languages.
This is my reading list for my PhD in AI, NLP, Deep Learning and more.
This is my reading list for my PhD in AI, NLP, Deep Learning and more.
document organizer with tags and full-text-search, in a simple and clean sqlite3 schema
document organizer with tags and full-text-search, in a simple and clean sqlite3 schema
Shared code for training sentence embeddings with Flax / JAX
flax-sentence-embeddings This repository will be used to share code for the Flax / JAX community event to train sentence embeddings on 1B+ training pa
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).
SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti
中文无监督SimCSE Pytorch实现
A PyTorch implementation of unsupervised SimCSE SimCSE: Simple Contrastive Learning of Sentence Embeddings 1. 用法 无监督训练 python train_unsup.py ./data/ne
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is
Reliable probability face embeddings
ProbFace, arxiv This is a demo code of training and testing [ProbFace] using Tensorflow. ProbFace is a reliable Probabilistic Face Embeddging (PFE) me
Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings
Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings Trong bài viết này mình sẽ sử dụng pretrain model SimCS
Cross-Document Coreference Resolution
Cross-Document Coreference Resolution This repository contains code and models for end-to-end cross-document coreference resolution, as decribed in ou
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch
PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN
A embed able annotation tool for end to end cross document co-reference
CoRefi CoRefi is an emebedable web component and stand alone suite for exaughstive Within Document and Cross Document Coreference Anntoation. For a de
Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021
ATLOP Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling. If you make use of this co