256 Repositories
Python label-embeddings Libraries
Python package to generate image embeddings with CLIP without PyTorch/TensorFlow
imgbeddings A Python package to generate embedding vectors from images, using OpenAI's robust CLIP model via Hugging Face transformers. These image em
Curso práctico: NLP de cero a cien 🤗
Curso Práctico: NLP de cero a cien Comprende todos los conceptos y arquitecturas clave del estado del arte del NLP y aplícalos a casos prácticos utili
[arXiv'22] Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation
Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation Xiao Fu1* Shangzhan Zhang1* Tianrun Chen1 Yichong Lu1 Lanyun Zhu2 Xi
A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision
pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-si
A PyTorch implementation of ICLR 2022 Oral paper PiCO: Contrastive Label Disambiguation for Partial Label Learning
PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project
Sapiens is a human antibody language model based on BERT.
Sapiens: Human antibody language model ____ _ / ___| __ _ _ __ (_) ___ _ __ ___ \___ \ / _` | '_ \| |/ _ \ '
✔👉A Centralized WebApp to Ensure Road Safety by checking on with the activities of the driver and activating label generator using NLP.
AI-For-Road-Safety Challenge hosted by Omdena Hyderabad Chapter Original Repo Link : https://github.com/OmdenaAI/omdena-india-roadsafety Final Present
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".
LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". See below for an overview of
This is a repo of basic Machine Learning!
Basic Machine Learning This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resource
[arXiv'22] Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation
Panoptic NeRF Project Page | Paper | Dataset Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation Xiao Fu*, Shangzhan zhang*,
Hyperbolic Image Segmentation, CVPR 2022
Hyperbolic Image Segmentation, CVPR 2022 This is the implementation of paper Hyperbolic Image Segmentation (CVPR 2022). Repository structure assets :
ACL22 paper: Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost
Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost LOVE is accpeted by ACL22 main conference as a long pape
NAACL 2022: MCSE: Multimodal Contrastive Learning of Sentence Embeddings
MCSE: Multimodal Contrastive Learning of Sentence Embeddings This repository contains code and pre-trained models for our NAACL-2022 paper MCSE: Multi
[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement
Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement Announcement 🔥 We have not tested the code yet. We will fini
Official implementation of our paper "Learning to Bootstrap for Combating Label Noise"
Learning to Bootstrap for Combating Label Noise This repo is the official implementation of our paper "Learning to Bootstrap for Combating Label Noise
Some embedding layer implementation using ivy library
ivy-manual-embeddings Some embedding layer implementation using ivy library. Just for fun. It is based on NYCTaxiFare dataset from kaggle (cut down to
A small tool to test and visualize protein embeddings and amino acid proportions.
polyprotein_stats A small tool to test and visualize protein embeddings and amino acid proportions. Currently deployed on streamlit.io. Given a set of
PyTorch implementation of the paper: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features
Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features Estimate the noise transition matrix with f-mutual information. This co
Python command line tool and python engine to label table fields and fields in data files.
Python command line tool and python engine to label table fields and fields in data files. It could help to find meaningful data in your tables and data files or to find Personal identifable information (PII).
Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift
This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).
nlabel is a library for generating, storing and retrieving tagging information and embedding vectors from various nlp libraries through a unified interface.
nlabel is a library for generating, storing and retrieving tagging information and embedding vectors from various nlp libraries through a unified interface.
Multi-label classification of retinal disorders
Multi-label classification of retinal disorders This is a deep learning course project. The goal is to develop a solution, using computer vision techn
A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation".
Dual-Contrastive-Learning A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation". Y
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime
Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning
PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambig
Author Disambiguation using Knowledge Graph Embeddings with Literals
Author Name Disambiguation with Knowledge Graph Embeddings using Literals This is the repository for the master thesis project on Knowledge Graph Embe
Predict the spans of toxic posts that were responsible for the toxic label of the posts
toxic-spans-detection An attempt at the SemEval 2021 Task 5: Toxic Spans Detection. The Toxic Spans Detection task of SemEval2021 required participant
Improving Object Detection by Label Assignment Distillation
Improving Object Detection by Label Assignment Distillation This is the official implementation of the WACV 2022 paper Improving Object Detection by L
LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs
LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs This is the code for the LERP. Dataset The dataset used is MI
CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation
CSKG: The CommonSense Knowledge Graph CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation: AT
BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable topics whilst keeping important words in the topic descriptions
BERTopic BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline. The pipeline accepts english text as input and returns the French translation.
Keras Image Embeddings using Contrastive Loss
Image to Embedding projection in vector space. Implementation in keras and tensorflow of batch all triplet loss for one-shot/few-shot learning.
Keras Image Embeddings using Contrastive Loss
Keras-Image-Embeddings-using-Contrastive-Loss Image to Embedding projection in vector space. Implementation in keras and tensorflow for custom data. B
TResNet: High Performance GPU-Dedicated Architecture
TResNet: High Performance GPU-Dedicated Architecture paperV2 | pretrained models Official PyTorch Implementation Tal Ridnik, Hussam Lawen, Asaf Noy, I
ECLARE: Extreme Classification with Label Graph Correlations
ECLARE ECLARE: Extreme Classification with Label Graph Correlations @InProceedings{Mittal21b, author = "Mittal, A. and Sachdeva, N. and Agrawal
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification
GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,
Automation in socks label validation
This is a project for socks card label validation where the socks card is validated comparing with the correct socks card whose coordinates are stored in the database. When the test socks card is compared with the correct socks card(master socks card) the software checks whether both test and master socks card matches or not.
MlTr: Multi-label Classification with Transformer
MlTr: Multi-label Classification with Transformer This is official implement of "MlTr: Multi-label Classification with Transformer". Abstract The task
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be
Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth
Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth This codebase implements the loss function described in: Insta
I label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive
I label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive. Obstacles like sentence negation, sarcasm, terseness, language ambiguity, and many others make this task very challenging.
Lbl2Vec learns jointly embedded label, document and word vectors to retrieve documents with predefined topics from an unlabeled document corpus.
Lbl2Vec Lbl2Vec is an algorithm for unsupervised document classification and unsupervised document retrieval. It automatically generates jointly embed
Code for the paper "Asymptotics of ℓ2 Regularized Network Embeddings"
README Code for the paper Asymptotics of L2 Regularized Network Embeddings. Requirements Requires Stellargraph 1.2.1, Tensorflow 2.6.0, scikit-learm 0
A practical ML pipeline for data labeling with experiment tracking using DVC.
Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a
Script and models for clustering LAION-400m CLIP embeddings.
clustering-laion400m Script and models for clustering LAION-400m CLIP embeddings. Models were fit on the first million or so image embeddings. A subje
Tensorflow implementation of paper: Learning to Diagnose with LSTM Recurrent Neural Networks.
Multilabel time series classification with LSTM Tensorflow implementation of model discussed in the following paper: Learning to Diagnose with LSTM Re
DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.
Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polar
GNEE - GAT Neural Event Embeddings
GNEE - GAT Neural Event Embeddings This repository contains source code for the GNEE (GAT Neural Event Embeddings) method introduced in the paper: "Se
This repo includes the supplementary of our paper "CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels"
Supplementary Materials for CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels This repository includes all supplementary mater
BridgeGAN - Tensorflow implementation of Bridging the Gap between Label- and Reference-based Synthesis in Multi-attribute Image-to-Image Translation.
Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba
Pytorch implemenation of Stochastic Multi-Label Image-to-image Translation (SMIT)
SMIT: Stochastic Multi-Label Image-to-image Translation This repository provides a PyTorch implementation of SMIT. SMIT can stochastically translate a
Augmented CLIP - Training simple models to predict CLIP image embeddings from text embeddings, and vice versa.
Train aug_clip against laion400m-embeddings found here: https://laion.ai/laion-400-open-dataset/ - note that this used the base ViT-B/32 CLIP model. S
Automatic library of congress classification, using word embeddings from book titles and synopses.
Automatic Library of Congress Classification The Library of Congress Classification (LCC) is a comprehensive classification system that was first deve
“Robust Lightweight Facial Expression Recognition Network with Label Distribution Training”, AAAI 2021.
EfficientFace Zengqun Zhao, Qingshan Liu, Feng Zhou. "Robust Lightweight Facial Expression Recognition Network with Label Distribution Training". AAAI
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems
Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe
Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition (NeurIPS 2019)
MLCR This is the source code for paper Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition. Xuesong Niu, Hu Han, Shiguang
Unsupervised Attributed Multiplex Network Embedding (AAAI 2020)
Unsupervised Attributed Multiplex Network Embedding (DMGI) Overview Nodes in a multiplex network are connected by multiple types of relations. However
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.
Code for hyperboloid embeddings for knowledge graph entities
Implementation for the papers: Self-Supervised Hyperboloid Representations from Logical Queries over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao,
Self-supervised Label Augmentation via Input Transformations (ICML 2020)
Self-supervised Label Augmentation via Input Transformations Authors: Hankook Lee, Sung Ju Hwang, Jinwoo Shin (KAIST) Accepted to ICML 2020 Install de
A script to add issues to a project in Github based on label or status.
Add Github Issues to Project (Beta) A python script to move Github issues to a next-gen (beta) Github Project Getting Started These instructions will
Fast, DB Backed pretrained word embeddings for natural language processing.
Embeddings Embeddings is a python package that provides pretrained word embeddings for natural language processing and machine learning. Instead of lo
Simple and Robust Loss Design for Multi-Label Learning with Missing Labels
Simple and Robust Loss Design for Multi-Label Learning with Missing Labels Official PyTorch Implementation of the paper Simple and Robust Loss Design
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks
MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks This is the code for the paper: MentorNet: Learning Data-Driven Curriculum fo
BERT, LDA, and TFIDF based keyword extraction in Python
BERT, LDA, and TFIDF based keyword extraction in Python kwx is a toolkit for multilingual keyword extraction based on Google's BERT and Latent Dirichl
[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning
SSUL - Official Pytorch Implementation (NeurIPS 2021) SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning Sun
Label data using HuggingFace's transformers and automatically get a prediction service
Label Studio for Hugging Face's Transformers Website • Docs • Twitter • Join Slack Community Transfer learning for NLP models by annotating your textu
A simple Neural Network that predicts the label for a series of handwritten digits
Neural_Network A simple Neural Network that predicts the label for a series of handwritten numbers This program tries to predict the label (1,2,3 etc.
LUKE -- Language Understanding with Knowledge-based Embeddings
LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf
Text Classification in Turkish Texts with Bert
You can watch the details of the project on my youtube channel Project Interface Project Second Interface Goal= Correctly guessing the classification
Train emoji embeddings based on emoji descriptions.
emoji2vec This is my attempt to train, visualize and evaluate emoji embeddings as presented by Ben Eisner, Tim Rocktäschel, Isabelle Augenstein, Matko
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.
WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx
A high-performance distributed deep learning system targeting large-scale and automated distributed training.
HETU Documentation | Examples Hetu is a high-performance distributed deep learning system targeting trillions of parameters DL model training, develop
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.
WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification
Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch
PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!
A nutritional label for food for thought.
Lexiscore As a first effort in tackling the theme of information overload in content consumption, I've been working on the lexiscore: a nutritional la
Scripts and outputs related to the paper Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings.
Knowledge Graph Embeddings and Chemical Effect Prediction, 2020. Scripts and outputs related to the paper Prediction of Adverse Biological Effects of
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning
VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain
[NeurIPS 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma This is the offi
This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021
Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021) Arxiv link Blog post This codebase is built on Causal Norm. Install co
ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction
ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction. NeurIPS 2021.
Label Hallucination for Few-Shot Classification
Label Hallucination for Few-Shot Classification This repo covers the implementation of the following paper: Label Hallucination for Few-Shot Classific
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning
VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain
BERTMap: A BERT-Based Ontology Alignment System
BERTMap: A BERT-based Ontology Alignment System Important Notices The relevant paper was accepted in AAAI-2022. Arxiv version is available at: https:/
Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion Models
Label-Efficient Semantic Segmentation with Diffusion Models Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion
100+ Chinese Word Vectors 上百种预训练中文词向量
Chinese Word Vectors 中文词向量 中文 This project provides 100+ Chinese Word Vectors (embeddings) trained with different representations (dense and sparse),
LUKE -- Language Understanding with Knowledge-based Embeddings
LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf
Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration
Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration This is the official repository for the EMNLP 2021 long pa
Label-Free Model Evaluation with Semi-Structured Dataset Representations
Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch
The official implementation of Relative Uncertainty Learning for Facial Expression Recognition
Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc
Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks.
The Lottery Ticket Hypothesis for Pre-trained BERT Networks Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks. [NeurIPS
Label Studio is a multi-type data labeling and annotation tool with standardized output format
Website • Docs • Twitter • Join Slack Community What is Label Studio? Label Studio is an open source data labeling tool. It lets you label data types
Label-Free Model Evaluation with Semi-Structured Dataset Representations
Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch
Official Implementation of "Learning Disentangled Behavior Embeddings"
DBE: Disentangled-Behavior-Embedding Official implementation of Learning Disentangled Behavior Embeddings (NeurIPS 2021). Environment requirement The
OpenL3: Open-source deep audio and image embeddings
OpenL3 OpenL3 is an open-source Python library for computing deep audio and image embeddings. Please refer to the documentation for detailed instructi
A benchmark dataset for mesh multi-label-classification based on cube engravings introduced in MeshCNN
Double Cube Engravings This script creates a dataset for multi-label mesh clasification, with an intentionally difficult setup for point cloud classif
Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification
Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification
Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script.
clip-text-decoder Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script. Example Predi