63 Repositories
Python federated Libraries
An easy-to-use federated learning platform
FederatedScope is a comprehensive federated learning platform that provides convenient usage and flexible customization for various federated learning
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning
Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to
Everything you want about DP-Based Federated Learning, including Papers and Code. (Mechanism: Laplace or Gaussian, Dataset: femnist, shakespeare, mnist, cifar-10 and fashion-mnist. )
Differential Privacy (DP) Based Federated Learning (FL) Everything about DP-based FL you need is here. (所有你需要的DP-based FL的信息都在这里) Code Tip: the code o
This is the formal code implementation of the CVPR 2022 paper 'Federated Class Incremental Learning'.
Official Pytorch Implementation for GLFC [CVPR-2022] Federated Class-Incremental Learning This is the official implementation code of our paper "Feder
PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020).
Scaffold-Federated-Learning PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020). Environment numpy=
Breaching - Breaching privacy in federated learning scenarios for vision and text
Breaching - A Framework for Attacks against Privacy in Federated Learning This P
Federated Learning - Including common test models for federated learning, like CNN, Resnet18 and lstm, controlled by different parser
Federated_Learning 💻 This projest include common test models for federated lear
OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework
OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework Introduction OpenFed is a foundational library for federated learning
BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning
BEAS Blockchain Enabled Asynchronous and Secure Federated Machine Learning Default Network Configuration: The default application uses the HyperLedger
FedGS: A Federated Group Synchronization Framework Implemented by LEAF-MX.
FedGS: Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT Preparation For instructions on generating data, plea
FedML: A Research Library and Benchmark for Federated Machine Learning
FedML: A Research Library and Benchmark for Federated Machine Learning 📄 https://arxiv.org/abs/2007.13518 News 2021-02-01 (Award): #NeurIPS 2020# Fed
Implementation of the federated dual coordinate descent (FedDCD) method.
FedDCD.jl Implementation of the federated dual coordinate descent (FedDCD) method. Installation To install, just call Pkg.add("https://github.com/Zhen
PyTorch implementation of federated learning framework based on the acceleration of global momentum
Federated Learning with Acceleration of Global Momentum PyTorch implementation of federated learning framework based on the acceleration of global mom
Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness
FL Analysis This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First L
Socialhome is best described as a federated personal profile with social networking functionality
Description Socialhome is best described as a federated personal profile with social networking functionality. Users can create rich content using Mar
A powerful framework for decentralized federated learning with user-defined communication topology
Scatterbrained Decentralized Federated Learning Scatterbrained makes it easy to build federated learning systems. In addition to traditional federated
Simulation-based performance analysis of server-less Blockchain-enabled Federated Learning
Blockchain-enabled Server-less Federated Learning Repository containing the files used to reproduce the results of the publication "Blockchain-enabled
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta
A powerful framework for decentralized federated learning with user-defined communication topology
Scatterbrained Decentralized Federated Learning Scatterbrained makes it easy to build federated learning systems. In addition to traditional federated
Django Federated Login provides an authentication bridge between Django projects and OpenID-enabled identity providers.
Django Federated Login Django Federated Login provides an authentication bridge between Django projects and OpenID-enabled identity providers. The bri
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.
FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code
Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.
Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API
FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.
This repository contains the implementation of the paper: Federated Distillation of Natural Language Understanding with Confident Sinkhorns
Federated Distillation of Natural Language Understanding with Confident Sinkhorns This repository provides an alternative method for ensembled distill
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies.
Anomaly Localization in Model Gradients Under Backdoor Attacks Against Federated Learning
Federated_Learning This repo provides a federated learning framework that allows to carry out backdoor attacks under varying conditions. This is a ker
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks Image Classification Dataset: Google Landmark, COCO, ImageNet Model: Efficient
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)
To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/
Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing"
ProxyFL Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing" Authors: Shivam Kalra*, Junfeng Wen*, Jess
Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs
Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs In this work, we propose an algorithm DP-SCAFFOLD(-warm), whic
SASE : Self-Adaptive noise distribution network for Speech Enhancement with heterogeneous data of Cross-Silo Federated learning
SASE : Self-Adaptive noise distribution network for Speech Enhancement with heterogeneous data of Cross-Silo Federated learning We propose a SASE mode
PyTorch implementation of Federated Learning with Non-IID Data, and federated learning algorithms, including FedAvg, FedProx.
Federated Learning with Non-IID Data This is an implementation of the following paper: Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, Vik
Federated Learning Based on Dynamic Regularization
Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i
Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework
VFedPCA+VFedAKPCA This is the official source code for the Paper: Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-
Implicit Model Specialization through DAG-based Decentralized Federated Learning
Federated Learning DAG Experiments This repository contains software artifacts to reproduce the experiments presented in the Middleware '21 paper "Imp
Migration of Edge-based Distributed Federated Learning
FedFly: Towards Migration in Edge-based Distributed Federated Learning About the research Due to mobility, a device participating in Federated Learnin
A collection of Google research projects related to Federated Learning and Federated Analytics.
Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective Official implementation of "FL-WBC: Enhan
Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"
Federated Distance (FedDist) This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: E
An Industrial Grade Federated Learning Framework
DOC | Quick Start | 中文 FATE (Federated AI Technology Enabler) is an open-source project initiated by Webank's AI Department to provide a secure comput
Flower - A Friendly Federated Learning Framework
Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o
DeceFL: A Principled Decentralized Federated Learning Framework
DeceFL: A Principled Decentralized Federated Learning Framework This repository comprises codes that reproduce experiments in Ye, et al (2021), which
FedMM: Saddle Point Optimization for Federated Adversarial Domain Adaptation
This repository contains the code accompanying the paper " FedMM: Saddle Point Optimization for Federated Adversarial Domain Adaptation" Paper link: R
Deep Federated Learning for Autonomous Driving
FADNet: Deep Federated Learning for Autonomous Driving Abstract Autonomous driving is an active research topic in both academia and industry. However,
Standard implementations of FedLab and its provided benchmarks.
FedLab-benchmarks This repo contains standard implementations of FedLab and its provided benchmarks. Currently, following algorithms or benchrmarks ar
FedScale: Benchmarking Model and System Performance of Federated Learning
FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca
This websocket program is for data transmission between server and client. Data transmission is for Federated Learning in Edge computing environment.
websocket-for-data-transmission This websocket program is for data transmission between server and client. Data transmission is for Federated Learning
FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning
FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning (FedML) developed and maintained by Scaleout Systems. FEDn enables highly scalable cross-silo and cross-device use-cases over FEDn networks.
Bachelor's Thesis in Computer Science: Privacy-Preserving Federated Learning Applied to Decentralized Data
federated is the source code for the Bachelor's Thesis Privacy-Preserving Federated Learning Applied to Decentralized Data (Spring 2021, NTNU) Federat
An unofficial PyTorch implementation of a federated learning algorithm, FedAvg.
Federated Averaging (FedAvg) in PyTorch An unofficial implementation of FederatedAveraging (or FedAvg) algorithm proposed in the paper Communication-E
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.
FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform
FedNLP: A Benchmarking Framework for Federated Learning in Natural Language Processing
FedNLP is a research-oriented benchmarking framework for advancing federated learning (FL) in natural language processing (NLP). It uses FedML repository as the git submodule. In other words, FedNLP only focuses on adavanced models and dataset, while FedML supports various federated optimizers (e.g., FedAvg) and platforms (Distributed Computing, IoT/Mobile, Standalone).
Plato: A New Framework for Federated Learning Research
a new software framework to facilitate scalable federated learning research.
Personalized Federated Learning using Pytorch (pFedMe)
Personalized Federated Learning with Moreau Envelopes (NeurIPS 2020) This repository implements all experiments in the paper Personalized Federated Le
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space
FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji
[ICLR'21] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization
FedBN: Federated Learning on Non-IID Features via Local Batch Normalization This is the PyTorch implemention of our paper FedBN: Federated Learning on
Official code implementation for "Personalized Federated Learning using Hypernetworks"
Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [
A framework for implementing federated learning
This is partly the reproduction of the paper of [Privacy-Preserving Federated Learning in Fog Computing](DOI: 10.1109/JIOT.2020.2987958. 2020)
An open framework for Federated Learning.
Welcome to Intel® Open Federated Learning Federated learning is a distributed machine learning approach that enables organizations to collaborate on m
FLEX (Federated Learning EXchange,FLEX) protocol is a set of standardized federal learning agreements designed by Tongdun AI Research Group。
Click to view Chinese version FLEX (Federated Learning Exchange) protocol is a set of standardized federal learning agreements designed by Tongdun AI
FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.
FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori
A library for answering questions using data you cannot see
A library for computing on data you do not own and cannot see PySyft is a Python library for secure and private Deep Learning. PySyft decouples privat