1763 Repositories
Python generative-adversarial-networks Libraries
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).
Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a
ttslearn: Library for Pythonで学ぶ音声合成 (Text-to-speech with Python)
ttslearn: Library for Pythonで学ぶ音声合成 (Text-to-speech with Python) 日本語は以下に続きます (Japanese follows) English: This book is written in Japanese and primaril
Code for the paper: Adversarial Machine Learning: Bayesian Perspectives
Code for the paper: Adversarial Machine Learning: Bayesian Perspectives This repository contains code for reproducing the experiments in the ** Advers
Final project code: Implementing BicycleGAN, for CIS680 FA21 at University of Pennsylvania
680 Final Project: BicycleGAN Haoran Tang Instructions 1. Training To train the network, please run train.py. Change hyper-parameters and folder paths
Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models
Cross-framework Python Package for Evaluation of Latent-based Generative Models Latte Latte (for LATent Tensor Evaluation) is a cross-framework Python
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks
MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks This is the code for the paper: MentorNet: Learning Data-Driven Curriculum fo
Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes, ICCV 2017
AdaptationSeg This is the Python reference implementation of AdaptionSeg proposed in "Curriculum Domain Adaptation for Semantic Segmentation of Urban
ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator
ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences an
PyTorch implementation of Super SloMo by Jiang et al.
Super-SloMo PyTorch implementation of "Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation" by Jiang H., Sun
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.
Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa
Machine learning algorithms for many-body quantum systems
NetKet NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and
StyleSwin: Transformer-based GAN for High-resolution Image Generation
StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"
Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of
A Japanese tokenizer based on recurrent neural networks
Nagisa is a python module for Japanese word segmentation/POS-tagging. It is designed to be a simple and easy-to-use tool. This tool has the following
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"
Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of
Catch-all collection of generative art made using processing
Generative art with Processing.py Some art I have created for fun. Dependencies Processing for Python, see how to download/use here Packages contained
Header-only library for using Keras models in C++.
frugally-deep Use Keras models in C++ with ease Table of contents Introduction Usage Performance Requirements and Installation FAQ Introduction Would
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking
Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks
ReFine: Multi-Grained Explainability for GNNs This is the official code for Towards Multi-Grained Explainability for Graph Neural Networks (NeurIPS 20
An AI for Music Generation
An AI for Music Generation
Tensorflow Tutorials using Jupyter Notebook
Tensorflow Tutorials using Jupyter Notebook TensorFlow tutorials written in Python (of course) with Jupyter Notebook. Tried to explain as kindly as po
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier
LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
Super Resolution Examples We run this script under TensorFlow 2.0 and the TensorLayer2.0+. For TensorLayer 1.4 version, please check release. 🚀 🚀 🚀
Dynamics-aware Adversarial Attack of 3D Sparse Convolution Network
Leaded Gradient Method (LGM) This repository contains the PyTorch implementation for paper Dynamics-aware Adversarial Attack of 3D Sparse Convolution
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.
Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)
CMUA-Watermark The official code for CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022) arxiv. It is bas
A full pipeline AutoML tool for tabular data
HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k
Deep Reinforcement Learning for Keras.
Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml
[CVPR 2020] Local Class-Specific and Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation
Contents Local and Global GAN Cross-View Image Translation Semantic Image Synthesis Acknowledgments Related Projects Citation Contributions Collaborat
[CVPR 2019 Oral] Multi-Channel Attention Selection GAN with Cascaded Semantic Guidance for Cross-View Image Translation
SelectionGAN for Guided Image-to-Image Translation CVPR Paper | Extended Paper | Guided-I2I-Translation-Papers Citation If you use this code for your
Adversarial Texture Optimization from RGB-D Scans (CVPR 2020).
AdversarialTexture Adversarial Texture Optimization from RGB-D Scans (CVPR 2020). Scanning Data Download Please refer to data directory for details. B
O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis
O-CNN This repository contains the implementation of our papers related with O-CNN. The code is released under the MIT license. O-CNN: Octree-based Co
[ECCV'20] Convolutional Occupancy Networks
Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o
The code for paper "Learning Implicit Fields for Generative Shape Modeling".
implicit-decoder The tensorflow code for paper "Learning Implicit Fields for Generative Shape Modeling", Zhiqin Chen, Hao (Richard) Zhang. Project pag
C3DPO - Canonical 3D Pose Networks for Non-rigid Structure From Motion.
C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion By: David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, Andrea Vedal
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.
VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations
Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations
Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of
3D HourGlass Networks for Human Pose Estimation Through Videos
3D-HourGlass-Network 3D CNN Based Hourglass Network for Human Pose Estimation (3D Human Pose) from videos. This was my summer'18 research project. Dis
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium
Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021
Frequency Bias of Generative Models Generator Testbed Discriminator Testbed This repository contains official code for the paper On the Frequency Bias
Build Low Code Automated Tensorflow, What-IF explainable models in just 3 lines of code.
Build Low Code Automated Tensorflow explainable models in just 3 lines of code.
Implementation of Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis
acLSTM_motion This folder contains an implementation of acRNN for the CMU motion database written in Pytorch. See the following links for more backgro
Tensorflow Implementation of ECCV'18 paper: Multimodal Human Motion Synthesis
MT-VAE for Multimodal Human Motion Synthesis This is the code for ECCV 2018 paper MT-VAE: Learning Motion Transformations to Generate Multimodal Human
Adversarial Learning for Modeling Human Motion
Adversarial Learning for Modeling Human Motion This repository contains the open source code which reproduces the results for the paper: Adversarial l
An implementation of "Learning human behaviors from motion capture by adversarial imitation"
Merel-MoCap-GAIL An implementation of Merel et al.'s paper on generative adversarial imitation learning (GAIL) using motion capture (MoCap) data: Lear
Something I built to test for Log4J vulnerabilities on customer networks.
Log4J-Scanner Something I built to test for Log4J vulnerabilities on customer networks. I'm not responsible if your computer blows up, catches fire or
Almost State-of-the-art Text Generation library
Ps: we are adding transformer model soon Text Gen 🐐 Almost State-of-the-art Text Generation library Text gen is a python library that allow you build
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.
Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,
Pytorch implementation of our paper under review -- 1xN Pattern for Pruning Convolutional Neural Networks
1xN Pattern for Pruning Convolutional Neural Networks (paper) . This is Pytorch re-implementation of "1xN Pattern for Pruning Convolutional Neural Net
Ensembling Off-the-shelf Models for GAN Training
Vision-aided GAN video (3m) | website | paper Can the collective knowledge from a large bank of pretrained vision models be leveraged to improve GAN t
Implementation of Nalbach et al. 2017 paper.
Deep Shading Convolutional Neural Networks for Screen-Space Shading Our project is based on Nalbach et al. 2017 paper. In this project, a set of buffe
This is the official PyTorch implementation of the CVPR 2020 paper "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting".
TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting Project Page | YouTube | Paper This is the official PyTorch implementation of the C
This repository contains the source code for the paper First Order Motion Model for Image Animation
!!! Check out our new paper and framework improved for articulated objects First Order Motion Model for Image Animation This repository contains the s
Ensembling Off-the-shelf Models for GAN Training
Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br
GANformer: Generative Adversarial Transformers
GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch
The code for the Subformer, from the EMNLP 2021 Findings paper: "Subformer: Exploring Weight Sharing for Parameter Efficiency in Generative Transformers", by Machel Reid, Edison Marrese-Taylor, and Yutaka Matsuo
Subformer This repository contains the code for the Subformer. To help overcome this we propose the Subformer, allowing us to retain performance while
This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels].
CGPN This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels]. Req
Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing
Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly! Efficient and Scalable Physics-Informed Deep Learning Collocation-
PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks
PyDEns PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks. With PyDEns one can solve PD
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation
NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni
Sparse Physics-based and Interpretable Neural Networks
Sparse Physics-based and Interpretable Neural Networks for PDEs This repository contains the code and manuscript for research done on Sparse Physics-b
Implementation of Research Paper "Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation"
Zero-DCE and Zero-DCE++(Lite architechture for Mobile and edge Devices) Papers Abstract The paper presents a novel method, Zero-Reference Deep Curve E
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code
In generative deep geometry learning, we often get many obj files remain to be rendered
a python prompt cli script for blender batch render In deep generative geometry learning, we always get many .obj files to be rendered. Our rendered i
Quickly visualize docker networks with graphviz.
Docker Network Graph Visualize the relationship between Docker networks and containers as a neat graphviz graph. Example Usage usage: docker-net-graph
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.03670
An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022
Dual Correlation Reduction Network An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022. Any
Hunt down social media accounts by username across social networks
Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $
Recursive Bayesian Networks
Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification
Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer
CGTransformer Code for our AAAI 2022 paper "Contrastive-Geometry Transformer network for Generalized 3D Pose Transfer" Contrastive-Geometry Transforme
A high-performance distributed deep learning system targeting large-scale and automated distributed training.
HETU Documentation | Examples Hetu is a high-performance distributed deep learning system targeting trillions of parameters DL model training, develop
Adversarial Examples for Extreme Multilabel Text Classification
Adversarial Examples for Extreme Multilabel Text Classification The code is adapted from the source codes of BERT-ATTACK [1], APLC_XLNet [2], and Atte
AI4Good project for detecting waste in the environment
Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in
Generate high quality pictures. GAN. Generative Adversarial Networks
ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).
PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear
PyG (PyTorch Geometric) - A library built upon PyTorch to easily write and train Graph Neural Networks (GNNs)
PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.
Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)
MUC Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018) Performance Details for Accuracy: | Dataset
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"
Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics @WIFS2021 (Montpellier, France) Rony Abecidan, Vincent Itier, Jeremie Boulan
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"
LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and
Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)
Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks This is the code for reproducing the results of th
Official PyTorch implementation of the paper "Graph-based Generative Face Anonymisation with Pose Preservation" in ICIAP 2021
Contents AnonyGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowledgments Citat
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer
A PyTorch library and evaluation platform for end-to-end compression research
CompressAI CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research. CompressAI currently provides: c
SeqAttack: a framework for adversarial attacks on token classification models
A framework for adversarial attacks against token classification models
A library for researching neural networks compression and acceleration methods.
A library for researching neural networks compression and acceleration methods.
Generative Art Synthesizer - a python program that generates python programs that generates generative art
GAS - Generative Art Synthesizer Generative Art Synthesizer - a python program that generates python programs that generates generative art. Examples
1st Solution For NeurIPS 2021 Competition on ML4CO Dual Task
KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a
Cycle Consistent Adversarial Domain Adaptation (CyCADA)
Cycle Consistent Adversarial Domain Adaptation (CyCADA) A pytorch implementation of CyCADA. If you use this code in your research please consider citi
Watch faces morph into each other with StyleGAN 2, StyleGAN, and DCGAN!
FaceMorpher FaceMorpher is an innovative project to get a unique face morph (or interpolation for geeks) on a website. Yes, this means you can see fac
A small library for doing fluid simulation with neural networks.
Neural Fluid Fields This is a small library for doing fluid simulation with neural fields. Check out our review paper, Neural Fields in Visual Computi
Synthetic Data Generation for tabular, relational and time series data.
An Open Source Project from the Data to AI Lab, at MIT Website: https://sdv.dev Documentation: https://sdv.dev/SDV User Guides Developer Guides Github
Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"
Light Field Networks Project Page | Paper | Data | Pretrained Models Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Dur
Code for ShadeGAN (NeurIPS2021) A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Project Page | Paper A Shading-Guided Generative Implicit Model
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)
Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)
Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)
On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"