150 Repositories
Python leaf-refinement-experiments Libraries
Pixel-Perfect Structure-from-Motion with Featuremetric Refinement (ICCV 2021, Oral)
Pixel-Perfect Structure-from-Motion (ICCV 2021 Oral) We introduce a framework that improves the accuracy of Structure-from-Motion by refining keypoint
OpenGL experiments with Pygame & ModernGL
pygame-opengl OpenGL experiments with Pygame & ModernGL TODO Skybox & Reflections Post-process effects (motion blur, color correction, etc..) Normal m
This is the repo for the paper "Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement".
Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement This is the repository for the paper "Improving the Accuracy-Memory Trad
PsychoPy is an open-source package for creating experiments in behavioral science.
PsychoPy is an open-source package for creating experiments in behavioral science. It aims to provide a single package that is: precise enoug
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"
Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.
pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve
Code for reproducing experiments in "Improved Training of Wasserstein GANs"
Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor
TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision
TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision
Experiments for distributed optimization algorithms
Network-Distributed Algorithm Experiments -- This repository contains a set of optimization algorithms and objective functions, and all code needed to
XManager: A framework for managing machine learning experiments 🧑🔬
XManager is a platform for packaging, running and keeping track of machine learning experiments. It currently enables one to launch experiments locally or on Google Cloud Platform (GCP). Interaction with experiments is done via XManager's APIs through Python launch scripts.
PyTorch code to run synthetic experiments.
Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}
Code to reproduce experiments in the paper "Explainability Requires Interactivity".
Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti
[ICCV2021] Official code for "Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition"
CTR-GCN This repo is the official implementation for Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition. The pap
Unoffical implementation about Image Super-Resolution via Iterative Refinement by Pytorch
Image Super-Resolution via Iterative Refinement Paper | Project Brief This is a unoffical implementation about Image Super-Resolution via Iterative Re
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)
pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv
Experiments on Flood Segmentation on Sentinel-1 SAR Imagery with Cyclical Pseudo Labeling and Noisy Student Training
Flood Detection Challenge This repository contains code for our submission to the ETCI 2021 Competition on Flood Detection (Winning Solution #2). Acco
PyTorch experiments with the Zalando fashion-mnist dataset
zalando-pytorch PyTorch experiments with the Zalando fashion-mnist dataset Project Organization ├── LICENSE ├── Makefile - Makefile with co
PyTorch Personal Trainer: My framework for deep learning experiments
Alex's PyTorch Personal Trainer (ptpt) (name subject to change) This repository contains my personal lightweight framework for deep learning projects
Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"
Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning This is the implementation of the paper "Self-Promoted Prototype Refinement
A collection of interactive machine-learning experiments: 🏋️models training + 🎨models demo
🤖 Interactive Machine Learning experiments: 🏋️models training + 🎨models demo
Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST
Random Erasing Data Augmentation =============================================================== black white random This code has the source code for
Photographic Image Synthesis with Cascaded Refinement Networks - Pytorch Implementation
Photographic Image Synthesis with Cascaded Refinement Networks-Pytorch (https://arxiv.org/abs/1707.09405) This is a Pytorch implementation of cascaded
Experiments with differentiable stacks and queues in PyTorch
Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s
Neural implicit reconstruction experiments for the Vector Neuron paper
Neural Implicit Reconstruction with Vector Neurons This repository contains code for the neural implicit reconstruction experiments in the paper Vecto
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement
Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax
Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported
Implementation of Invariant Point Attention, used for coordinate refinement in the structure module of Alphafold2, as a standalone Pytorch module
Invariant Point Attention - Pytorch Implementation of Invariant Point Attention as a standalone module, which was used in the structure module of Alph
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach
Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”
Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis
WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)
L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co
This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.
TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim
House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects
House-GAN++ Code and instructions for our paper: House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me
code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`
Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021) Introduction PBR is a conceptually simple yet effective
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)
End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.
DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish
Algorithmic trading with deep learning experiments
Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph
Official Implementation for "ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement" https://arxiv.org/abs/2104.02699
ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement Recently, the power of unconditional image synthesis has significantly advanced th
Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"
pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)
Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a
Official implementation for (Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation, CVPR-2021)
FRSKD Official implementation for Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation (CVPR-2021) Requirements Pytho
Pytorch port of Google Research's LEAF Audio paper
leaf-audio-pytorch Pytorch port of Google Research's LEAF Audio paper published at ICLR 2021. This port is not completely finished, but the Leaf() fro
Image augmentation for machine learning experiments.
imgaug This python library helps you with augmenting images for your machine learning projects. It converts a set of input images into a new, much lar
L2X - Code for replicating the experiments in the paper Learning to Explain: An Information-Theoretic Perspective on Model Interpretation.
L2X Code for replicating the experiments in the paper Learning to Explain: An Information-Theoretic Perspective on Model Interpretation at ICML 2018,
ReproZip is a tool that simplifies the process of creating reproducible experiments from command-line executions, a frequently-used common denominator in computational science.
ReproZip ReproZip is a tool aimed at simplifying the process of creating reproducible experiments from command-line executions, a frequently-used comm
Simple reimplemetation experiments about FcaNet
FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"
gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing
SciKit-Learn Laboratory (SKLL) makes it easy to run machine learning experiments.
SciKit-Learn Laboratory This Python package provides command-line utilities to make it easier to run machine learning experiments with scikit-learn. O
a delightful machine learning tool that allows you to train, test and use models without writing code
igel A delightful machine learning tool that allows you to train/fit, test and use models without writing code Note I'm also working on a GUI desktop