5232 Repositories
Python learning-with-noisy-labels Libraries
Dimensionality reduction in very large datasets using Siamese Networks
ivis Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets. Ivis
The open-source tool for building high-quality datasets and computer vision models
The open-source tool for building high-quality datasets and computer vision models. Website • Docs • Try it Now • Tutorials • Examples • Blog • Commun
Automatically Visualize any dataset, any size with a single line of code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.
AutoViz Automatically Visualize any dataset, any size with a single line of code. AutoViz performs automatic visualization of any dataset with one lin
Visualize and compare datasets, target values and associations, with one line of code.
In-depth EDA (target analysis, comparison, feature analysis, correlation) in two lines of code! Sweetviz is an open-source Python library that generat
Extensible, parallel implementations of t-SNE
openTSNE openTSNE is a modular Python implementation of t-Distributed Stochasitc Neighbor Embedding (t-SNE) [1], a popular dimensionality-reduction al
Visualizations for machine learning datasets
Introduction The facets project contains two visualizations for understanding and analyzing machine learning datasets: Facets Overview and Facets Dive
Library for exploring and validating machine learning data
TensorFlow Data Validation TensorFlow Data Validation (TFDV) is a library for exploring and validating machine learning data. It is designed to be hig
Uniform Manifold Approximation and Projection
UMAP Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be used for visualisation similarly to t-SNE, bu
Create HTML profiling reports from pandas DataFrame objects
Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great
Python Audio Analysis Library: Feature Extraction, Classification, Segmentation and Applications
A Python library for audio feature extraction, classification, segmentation and applications This doc contains general info. Click here for the comple
DeepSpeech is an open source embedded (offline, on-device) speech-to-text engine which can run in real time on devices ranging from a Raspberry Pi 4 to high power GPU servers.
Project DeepSpeech DeepSpeech is an open-source Speech-To-Text engine, using a model trained by machine learning techniques based on Baidu's Deep Spee
A Python library for audio data augmentation. Inspired by albumentations. Useful for machine learning.
Audiomentations A Python library for audio data augmentation. Inspired by albumentations. Useful for deep learning. Runs on CPU. Supports mono audio a
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning
Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases.
Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases. Ivy wraps the functional APIs of existing frameworks. Framework-agnostic functions, libraries and layers can then be written using Ivy, with simultaneous support for all frameworks. Ivy currently supports Jax, TensorFlow, PyTorch, MXNet and Numpy. Check out the docs for more info!
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.
text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t
Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.
Ravens is a collection of simulated tasks in PyBullet for learning vision-based robotic manipulation, with emphasis on pick and place. It features a Gym-like API with 10 tabletop rearrangement tasks, each with (i) a scripted oracle that provides expert demonstrations (for imitation learning), and (ii) reward functions that provide partial credit (for reinforcement learning).
Official implementation of the ICLR 2021 paper
You Only Need Adversarial Supervision for Semantic Image Synthesis Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial S
Implementation of TabTransformer, attention network for tabular data, in Pytorch
Tab Transformer Implementation of Tab Transformer, attention network for tabular data, in Pytorch. This simple architecture came within a hair's bread
Exploring Cross-Image Pixel Contrast for Semantic Segmentation
Exploring Cross-Image Pixel Contrast for Semantic Segmentation Exploring Cross-Image Pixel Contrast for Semantic Segmentation, Wenguan Wang, Tianfei Z
A standard framework for modelling Deep Learning Models for tabular data
PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.
DeepMind Alchemy task environment: a meta-reinforcement learning benchmark
The DeepMind Alchemy environment is a meta-reinforcement learning benchmark that presents tasks sampled from a task distribution with deep underlying structure.
Short, introductory guide for the Python programming language
100 Page Python Intro This book is a short, introductory guide for the Python programming language.
Code for "Learning to Segment Rigid Motions from Two Frames".
rigidmask Code for "Learning to Segment Rigid Motions from Two Frames". ** This is a partial release with inference and evaluation code.
Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation
Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation Introduction In this work, we propose a new method
the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.
EmbedSeg Introduction This repository hosts the version of the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].
Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow
用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本和PARL(paddle)版本
用强化学习玩合成大西瓜 代码地址:https://github.com/Sharpiless/play-daxigua-using-Reinforcement-Learning 用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本、PARL(paddle)版本和pytorch版本
Code for "Diffusion is All You Need for Learning on Surfaces"
Source code for "Diffusion is All You Need for Learning on Surfaces", by Nicholas Sharp Souhaib Attaiki Keenan Crane Maks Ovsjanikov NOTE: the linked
GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training
GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training Code and model from our AAAI 2021 paper
Summarization, translation, sentiment-analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX.
Summarization, translation, Q&A, text generation and more at blazing speed using a T5 version implemented in ONNX. This package is still in alpha stag
Named-entity recognition using neural networks. Easy-to-use and state-of-the-art results.
NeuroNER NeuroNER is a program that performs named-entity recognition (NER). Website: neuroner.com. This page gives step-by-step instructions to insta
Yet another Python binding for fastText
pyfasttext Warning! pyfasttext is no longer maintained: use the official Python binding from the fastText repository: https://github.com/facebookresea
Facilitating the design, comparison and sharing of deep text matching models.
MatchZoo Facilitating the design, comparison and sharing of deep text matching models. MatchZoo 是一个通用的文本匹配工具包,它旨在方便大家快速的实现、比较、以及分享最新的深度文本匹配模型。 🔥 News
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.
anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam
Topic Modelling for Humans
gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ
Text vectorization tool to outperform TFIDF for classification tasks
WHAT: Supervised text vectorization tool Textvec is a text vectorization tool, with the aim to implement all the "classic" text vectorization NLP meth
NLP library designed for reproducible experimentation management
Welcome to the Transfer NLP library, a framework built on top of PyTorch to promote reproducible experimentation and Transfer Learning in NLP You can
NeuralQA: A Usable Library for Question Answering on Large Datasets with BERT
NeuralQA: A Usable Library for (Extractive) Question Answering on Large Datasets with BERT Still in alpha, lots of changes anticipated. View demo on n
Translate - a PyTorch Language Library
NOTE PyTorch Translate is now deprecated, please use fairseq instead. Translate - a PyTorch Language Library Translate is a library for machine transl
Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.
Kashgari Overview | Performance | Installation | Documentation | Contributing 🎉 🎉 🎉 We released the 2.0.0 version with TF2 Support. 🎉 🎉 🎉 If you
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet
Sockeye This package contains the Sockeye project, an open-source sequence-to-sequence framework for Neural Machine Translation based on Apache MXNet
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.
(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u
DELTA is a deep learning based natural language and speech processing platform.
DELTA - A DEep learning Language Technology plAtform What is DELTA? DELTA is a deep learning based end-to-end natural language and speech processing p
Text preprocessing, representation and visualization from zero to hero.
Text preprocessing, representation and visualization from zero to hero. From zero to hero • Installation • Getting Started • Examples • API • FAQ • Co
NeMo: a toolkit for conversational AI
NVIDIA NeMo Introduction NeMo is a toolkit for creating Conversational AI applications. NeMo product page. Introductory video. The toolkit comes with
Python package for performing Entity and Text Matching using Deep Learning.
DeepMatcher DeepMatcher is a Python package for performing entity and text matching using deep learning. It provides built-in neural networks and util
Toolkit for Machine Learning, Natural Language Processing, and Text Generation, in TensorFlow. This is part of the CASL project: http://casl-project.ai/
Texar is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks
A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect
Beautiful visualizations of how language differs among document types.
Scattertext 0.1.0.0 A tool for finding distinguishing terms in corpora and displaying them in an interactive HTML scatter plot. Points corresponding t
Basic Utilities for PyTorch Natural Language Processing (NLP)
Basic Utilities for PyTorch Natural Language Processing (NLP) PyTorch-NLP, or torchnlp for short, is a library of basic utilities for PyTorch NLP. tor
Snips Python library to extract meaning from text
Snips NLU Snips NLU (Natural Language Understanding) is a Python library that allows to extract structured information from sentences written in natur
🛸 Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy
spacy-transformers: Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy This package provides spaCy components and architectures to use tr
🦆 Contextually-keyed word vectors
sense2vec: Contextually-keyed word vectors sense2vec (Trask et. al, 2015) is a nice twist on word2vec that lets you learn more interesting and detaile
✨Fast Coreference Resolution in spaCy with Neural Networks
✨ NeuralCoref 4.0: Coreference Resolution in spaCy with Neural Networks. NeuralCoref is a pipeline extension for spaCy 2.1+ which annotates and resolv
Python implementation of TextRank for phrase extraction and summarization of text documents
PyTextRank PyTextRank is a Python implementation of TextRank as a spaCy pipeline extension, used to: extract the top-ranked phrases from text document
fastNLP: A Modularized and Extensible NLP Framework. Currently still in incubation.
fastNLP fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是快速实现NLP任务以及构建复杂模型。 fastNLP具有如下的特性: 统一的Tabular式数据容器,简化数据预处理过程; 内置多种数据集的Loader和Pipe,省去预处理代码; 各种方便的NLP工具,例如Embedd
Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"
T5: Text-To-Text Transfer Transformer The t5 library serves primarily as code for reproducing the experiments in Exploring the Limits of Transfer Lear
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.
textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr
Official Stanford NLP Python Library for Many Human Languages
Stanza: A Python NLP Library for Many Human Languages The Stanford NLP Group's official Python NLP library. It contains support for running various ac
:mag: Transformers at scale for question answering & neural search. Using NLP via a modular Retriever-Reader-Pipeline. Supporting DPR, Elasticsearch, HuggingFace's Modelhub...
Haystack is an end-to-end framework for Question Answering & Neural search that enables you to ... ... ask questions in natural language and find gran
An open source library for deep learning end-to-end dialog systems and chatbots.
DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re
An easier way to build neural search on the cloud
An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g
NLP made easy
GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l
Open Source Neural Machine Translation in PyTorch
OpenNMT-py: Open-Source Neural Machine Translation OpenNMT-py is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine trans
An open-source NLP research library, built on PyTorch.
An Apache 2.0 NLP research library, built on PyTorch, for developing state-of-the-art deep learning models on a wide variety of linguistic tasks. Quic
Data loaders and abstractions for text and NLP
torchtext This repository consists of: torchtext.data: Generic data loaders, abstractions, and iterators for text (including vocabulary and word vecto
A very simple framework for state-of-the-art Natural Language Processing (NLP)
A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. IMPORTANT: (30.08.2020) We moved our models
ChatterBot is a machine learning, conversational dialog engine for creating chat bots
ChatterBot ChatterBot is a machine-learning based conversational dialog engine build in Python which makes it possible to generate responses based on
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants
Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual
NLTK Source
Natural Language Toolkit (NLTK) NLTK -- the Natural Language Toolkit -- is a suite of open source Python modules, data sets, and tutorials supporting
💫 Industrial-strength Natural Language Processing (NLP) in Python
spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc
Dimensionality reduction in very large datasets using Siamese Networks
ivis Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets. Ivis
The open-source tool for building high-quality datasets and computer vision models
The open-source tool for building high-quality datasets and computer vision models. Website • Docs • Try it Now • Tutorials • Examples • Blog • Commun
Automatically Visualize any dataset, any size with a single line of code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.
AutoViz Automatically Visualize any dataset, any size with a single line of code. AutoViz performs automatic visualization of any dataset with one lin
Visualize and compare datasets, target values and associations, with one line of code.
In-depth EDA (target analysis, comparison, feature analysis, correlation) in two lines of code! Sweetviz is an open-source Python library that generat
Extensible, parallel implementations of t-SNE
openTSNE openTSNE is a modular Python implementation of t-Distributed Stochasitc Neighbor Embedding (t-SNE) [1], a popular dimensionality-reduction al
Visualizations for machine learning datasets
Introduction The facets project contains two visualizations for understanding and analyzing machine learning datasets: Facets Overview and Facets Dive
Library for exploring and validating machine learning data
TensorFlow Data Validation TensorFlow Data Validation (TFDV) is a library for exploring and validating machine learning data. It is designed to be hig
Uniform Manifold Approximation and Projection
UMAP Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be used for visualisation similarly to t-SNE, bu
Create HTML profiling reports from pandas DataFrame objects
Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great
Learning embeddings for classification, retrieval and ranking.
StarSpace StarSpace is a general-purpose neural model for efficient learning of entity embeddings for solving a wide variety of problems: Learning wor
Elegy is a framework-agnostic Trainer interface for the Jax ecosystem.
Elegy Elegy is a framework-agnostic Trainer interface for the Jax ecosystem. Main Features Easy-to-use: Elegy provides a Keras-like high-level API tha
NeuPy is a Tensorflow based python library for prototyping and building neural networks
NeuPy v0.8.2 NeuPy is a python library for prototyping and building neural networks. NeuPy uses Tensorflow as a computational backend for deep learnin
Predictive AI layer for existing databases.
MindsDB is an open-source AI layer for existing databases that allows you to effortlessly develop, train and deploy state-of-the-art machine learning
Intel® Nervana™ reference deep learning framework committed to best performance on all hardware
DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this
Lightweight library to build and train neural networks in Theano
Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C
A toolkit for making real world machine learning and data analysis applications in C++
dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl
Machine learning framework for both deep learning and traditional algorithms
NeoML is an end-to-end machine learning framework that allows you to build, train, and deploy ML models. This framework is used by ABBYY engineers for
ThunderGBM: Fast GBDTs and Random Forests on GPUs
Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o
torchbearer: A model fitting library for PyTorch
Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll
JAX-based neural network library
Haiku: Sonnet for JAX Overview | Why Haiku? | Quickstart | Installation | Examples | User manual | Documentation | Citing Haiku What is Haiku? Haiku i
ThunderSVM: A Fast SVM Library on GPUs and CPUs
What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss
MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.
Documentation | FAQ | Release Notes | Roadmap | MACE Model Zoo | Demo | Join Us | 中文 Mobile AI Compute Engine (or MACE for short) is a deep learning i
fklearn: Functional Machine Learning
fklearn: Functional Machine Learning fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning. Th
Shōgun
The SHOGUN machine learning toolbox Unified and efficient Machine Learning since 1999. Latest release: Cite Shogun: Develop branch build status: Donat
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply
Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and
Deep learning operations reinvented (for pytorch, tensorflow, jax and others)
This video in better quality. einops Flexible and powerful tensor operations for readable and reliable code. Supports numpy, pytorch, tensorflow, and
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.
Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on
mlpack: a scalable C++ machine learning library --
a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack