176 Repositories
Python linear-layers Libraries
Building and deploying AWS Lambda Shared Layers
AWS Lambda Shared Layers This repository is hosting the code from the following blog post: AWS Lambda & Shared layers for Python. The goal of this rep
ConformalLayers: A non-linear sequential neural network with associative layers
ConformalLayers: A non-linear sequential neural network with associative layers ConformalLayers is a conformal embedding of sequential layers of Convo
Code for the Weighted, Accelerated and Restarted Primal-dual algorithm. This algorithm achieves stable linear convergence for reconstruction from undersampled noisy measurements under an approximate sharpness condition. See the paper for details.
WARPd Code for the Weighted, Accelerated and Restarted Primal-dual algorithm. This algorithm achieves stable linear convergence for reconstruction fro
Rotazioni: a linear programming workout split optimizer
Rotazioni: a linear programming workout split optimizer Dependencies Dependencies for the frontend and backend are respectively listed in client/packa
SOFT: Softmax-free Transformer with Linear Complexity, NeurIPS 2021 Spotlight
SOFT: Softmax-free Transformer with Linear Complexity SOFT: Softmax-free Transformer with Linear Complexity, Jiachen Lu, Jinghan Yao, Junge Zhang, Xia
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)
Unsupervised Depth Completion with Calibrated Backprojection Layers PyTorch implementation of Unsupervised Depth Completion with Calibrated Backprojec
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)
Modeling CNN layers activity with Gaussian mixture model
GMM-CNN This code package implements the modeling of CNN layers activity with Gaussian mixture model and Inference Graphs visualization technique from
Differentiable scientific computing library
xitorch: differentiable scientific computing library xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network
Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto
MIT-Machine Learning with Python–From Linear Models to Deep Learning
MIT-Machine Learning with Python–From Linear Models to Deep Learning | One of the 5 courses in MIT MicroMasters in Statistics & Data Science Welcome t
tetrados is a tool to generate a density of states using the linear tetrahedron method from a band structure.
tetrados tetrados is a tool to generate a density of states using the linear tetrahedron method from a band structure. Currently, only VASP calculatio
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"
Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin
Deep Residual Networks with 1K Layers
Deep Residual Networks with 1K Layers By Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Microsoft Research Asia (MSRA). Table of Contents Introduc
Perform Linear Classification with Multi-way Data
MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (
Implementations of Machine Learning models, Regularizers, Optimizers and different Cost functions.
Linear Models Implementations of LinearRegression, LassoRegression and RidgeRegression with appropriate Regularizers and Optimizers. Linear Regression
A (very dirty) experiment to remove layers from a Docker image.
Surgically remove layers from a Docker image (with a chainsaw)
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)
Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax
[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou
Graphic notes on Gilbert Strang's "Linear Algebra for Everyone"
Graphic notes on Gilbert Strang's "Linear Algebra for Everyone"
Implementation of linear CorEx and temporal CorEx.
Correlation Explanation Methods Official implementation of linear correlation explanation (linear CorEx) and temporal correlation explanation (T-CorEx
Dear PyGui Extensions is a collection of useful tools, abstractions, and simplification layers built with/for Dear PyGui users.
Dear PyGui Extensions: A collection of useful tools, abstractions, and simplification layers built with/for Dear PyGui users.
PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper.
deep-linear-shapes PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper. If you find this code useful i
Simple linear model implementations from scratch.
Hand Crafted Models Simple linear model implementations from scratch. Table of contents Overview Project Structure Getting started Citing this project
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling
VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,
Accelerate Neural Net Training by Progressively Freezing Layers
FreezeOut A simple technique to accelerate neural net training by progressively freezing layers. This repository contains code for the extended abstra
DEMix Layers for Modular Language Modeling
DEMix This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021). T
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch) Paper: https://arxiv.org/abs/2105.01883 Citation: @
A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching.
A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching. The solver will solve equations of the type: A can be
Visualizations of linear algebra algorithms for people who want a deep understanding
Visualising algorithms on symmetric matrices Examples QR algorithm and LR algorithm Here, we have a GIF animation of an interactive visualisation of t
TensorFlow, PyTorch and Numpy layers for generating Orthogonal Polynomials
OrthNet TensorFlow, PyTorch and Numpy layers for generating multi-dimensional Orthogonal Polynomials 1. Installation 2. Usage 3. Polynomials 4. Base C
A PyTorch Implementation of the Luna: Linear Unified Nested Attention
Unofficial PyTorch implementation of Luna: Linear Unified Nested Attention The quadratic computational and memory complexities of the Transformer’s at
🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐
🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐
Relative Positional Encoding for Transformers with Linear Complexity
Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin
An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).
MixHop and N-GCN ⠀ A PyTorch implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019)
Compare outputs between layers written in Tensorflow and layers written in Pytorch
Compare outputs of Wasserstein GANs between TensorFlow vs Pytorch This is our testing module for the implementation of improved WGAN in Pytorch Prereq
Spectral Tensor Train Parameterization of Deep Learning Layers
Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr
Official repository for the paper "Going Beyond Linear Transformers with Recurrent Fast Weight Programmers"
Recurrent Fast Weight Programmers This is the official repository containing the code we used to produce the experimental results reported in the pape
A python library to build Model Trees with Linear Models at the leaves.
A python library to build Model Trees with Linear Models at the leaves.
30 Days Of Machine Learning Using Pytorch
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.
aft-pytorch Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc. Installation You can i
A New, Interactive Approach to Learning Python
This is the repository for The Python Workshop, published by Packt. It contains all the supporting project files necessary to work through the course from start to finish.
Improving Deep Network Debuggability via Sparse Decision Layers
Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition
RepMLP RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition Released the code of RepMLP together with an example o
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms
Statsmodels: statistical modeling and econometrics in Python
About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an
Meta Language-Specific Layers in Multilingual Language Models
Meta Language-Specific Layers in Multilingual Language Models This repo contains the source codes for our paper On Negative Interference in Multilingu
A complete guide to start and improve in machine learning (ML)
A complete guide to start and improve in machine learning (ML), artificial intelligence (AI) in 2021 without ANY background in the field and stay up-to-date with the latest news and state-of-the-art techniques!
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayesian-Torch is designed to be flexible and seamless in extending a deterministic deep neural network architecture to corresponding Bayesian form by simply replacing the deterministic layers with Bayesian layers.
xitorch: differentiable scientific computing library
xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely used in scientific computing applications as well as deep learning.
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"
Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant
monolish: MONOlithic Liner equation Solvers for Highly-parallel architecture
monolish is a linear equation solver library that monolithically fuses variable data type, matrix structures, matrix data format, vendor specific data transfer APIs, and vendor specific numerical algebra libraries.
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.
Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me
Large-scale linear classification, regression and ranking in Python
lightning lightning is a library for large-scale linear classification, regression and ranking in Python. Highlights: follows the scikit-learn API con
An implementation of Performer, a linear attention-based transformer, in Pytorch
Performer - Pytorch An implementation of Performer, a linear attention-based transformer variant with a Fast Attention Via positive Orthogonal Random
WebGL2 powered geospatial visualization layers
deck.gl | Website WebGL2-powered, highly performant large-scale data visualization deck.gl is designed to simplify high-performance, WebGL-based visua
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks
PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted
Linear Prediction Coefficients estimation from mel-spectrogram implemented in Python based on Levinson-Durbin algorithm.
LPC_for_TTS Linear Prediction Coefficients estimation from mel-spectrogram implemented in Python based on Levinson-Durbin algorithm. 基于Levinson-Durbin
uMap lets you create maps with OpenStreetMap layers in a minute and embed them in your site.
uMap project About uMap lets you create maps with OpenStreetMap layers in a minute and embed them in your site. Because we think that the more OSM wil
An automated algorithm to extract the linear blend skinning (LBS) from a set of example poses
Dem Bones This repository contains an implementation of Smooth Skinning Decomposition with Rigid Bones, an automated algorithm to extract the Linear B
Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"
Infinitely Deep Bayesian Neural Networks with SDEs This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stocha
🎆 A visualization of the CapsNet layers to better understand how it works
CapsNet-Visualization For more information on capsule networks check out my Medium articles here and here. Setup Use pip to install the required pytho
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.
Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin
Python script for Linear, Non-Linear Convection, Burger’s & Poisson Equation in 1D & 2D, 1D Diffusion Equation using Standard Wall Function, 2D Heat Conduction Convection equation with Dirichlet & Neumann BC, full Navier-Stokes Equation coupled with Poisson equation for Cavity and Channel flow in 2D using Finite Difference Method & Finite Volume Method.
Navier-Stokes-numerical-solution-using-Python- Python script for Linear, Non-Linear Convection, Burger’s & Poisson Equation in 1D & 2D, 1D D
kapre: Keras Audio Preprocessors
Kapre Keras Audio Preprocessors - compute STFT, ISTFT, Melspectrogram, and others on GPU real-time. Tested on Python 3.6 and 3.7 Why Kapre? vs. Pre-co
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin
Statsmodels: statistical modeling and econometrics in Python
About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang
Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2
Statsmodels: statistical modeling and econometrics in Python
About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.
Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose
Simple machine learning library / 簡單易用的機器學習套件
FukuML Simple machine learning library / 簡單易用的機器學習套件 Installation $ pip install FukuML Tutorial Lesson 1: Perceptron Binary Classification Learning Al
H2O is an Open Source, Distributed, Fast & Scalable Machine Learning Platform: Deep Learning, Gradient Boosting (GBM) & XGBoost, Random Forest, Generalized Linear Modeling (GLM with Elastic Net), K-Means, PCA, Generalized Additive Models (GAM), RuleFit, Support Vector Machine (SVM), Stacked Ensembles, Automatic Machine Learning (AutoML), etc.
H2O H2O is an in-memory platform for distributed, scalable machine learning. H2O uses familiar interfaces like R, Python, Scala, Java, JSON and the Fl
PyArmadillo: an alternative approach to linear algebra in Python
PyArmadillo is a linear algebra library for the Python language, with an emphasis on ease of use.
kapre: Keras Audio Preprocessors
Kapre Keras Audio Preprocessors - compute STFT, ISTFT, Melspectrogram, and others on GPU real-time. Tested on Python 3.6 and 3.7 Why Kapre? vs. Pre-co