1673 Repositories
Python model-visualization Libraries
Neural network pruning for finding a sparse computational model for controlling a biological motor task.
MothPruning Scientific Overview Originally inspired by biological nervous systems, deep neural networks (DNNs) are powerful computational tools for mo
R-package accompanying the paper "Dynamic Factor Model for Functional Time Series: Identification, Estimation, and Prediction"
dffm The goal of dffm is to provide functionality to apply the methods developed in the paper “Dynamic Factor Model for Functional Time Series: Identi
Repository for the AugmentedPCA Python package.
Overview This Python package provides implementations of Augmented Principal Component Analysis (AugmentedPCA) - a family of linear factor models that
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval
CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate
Code release for ConvNeXt model
A ConvNet for the 2020s Official PyTorch implementation of ConvNeXt, from the following paper: A ConvNet for the 2020s. arXiv 2022. Zhuang Liu, Hanzi
Active Transport Analytics Model: A new strategic transport modelling and data visualization framework
{ATAM} Active Transport Analytics Model Active Transport Analytics Model (“ATAM”
Ejemplo Algoritmo Viterbi - Example of a Viterbi algorithm applied to a hidden Markov model on DNA sequence
Ejemplo Algoritmo Viterbi Ejemplo de un algoritmo Viterbi aplicado a modelo ocul
Active Transport Analytics Model (ATAM) is a new strategic transport modelling and data visualization framework for Active Transport as well as emerging micro-mobility modes
{ATAM} Active Transport Analytics Model Active Transport Analytics Model (“ATAM”) is a new strategic transport modelling and data visualization framew
Machine Learning Model deployment for Container (TensorFlow Serving)
try_tf_serving ├───dataset │ ├───testing │ │ ├───paper │ │ ├───rock │ │ └───scissors │ └───training │ ├───paper │ ├───rock
End-to-end MLOps pipeline of a BERT model for emotion classification.
image source EmoBERT-MLOps The goal of this repository is to build an end-to-end MLOps pipeline based on the MLOps course from Made with ML, but this
Python PID Tuner - Based on a FOPDT model obtained using a Open Loop Process Reaction Curve
PythonPID_Tuner Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a rough e
D-Analyst : High Performance Visualization Tool
D-Analyst : High Performance Visualization Tool D-Analyst is a high performance data visualization built with python and based on OpenGL. It allows to
A Python script to parse Fortinet products serial numbers, and detect the associated model and version.
ParseFortinetSerialNumber A Python script to parse Fortinet products serial numbers, and detect the associated model and version. Example $ ./ParseFor
FURY - A software library for scientific visualization in Python
Free Unified Rendering in Python A software library for scientific visualization in Python. General Information • Key Features • Installation • How to
Python for downloading model data (HRRR, RAP, GFS, NBM, etc.) from NOMADS, NOAA's Big Data Program partners (Amazon, Google, Microsoft), and the University of Utah Pando Archive System.
Python for downloading model data (HRRR, RAP, GFS, NBM, etc.) from NOMADS, NOAA's Big Data Program partners (Amazon, Google, Microsoft), and the University of Utah Pando Archive System.
Research into Forex price prediction from price history using Deep Sequence Modeling with Stacked LSTMs.
Forex Data Prediction via Recurrent Neural Network Deep Sequence Modeling Research Paper Our research paper can be viewed here Installation Clone the
Visualization of hidden layer activations of small multilayer perceptrons (MLPs)
MLP Hidden Layer Activation Visualization To gain some intuition about the internal representation of simple multi-layer perceptrons (MLPs) I trained
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."
DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve
Code for Overinterpretation paper Overinterpretation reveals image classification model pathologies
Overinterpretation This repository contains the code for the paper: Overinterpretation reveals image classification model pathologies Authors: Brandon
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)
ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v
This is a super simple visualization toolbox (script) for transformer attention visualization ✌
Trans_attention_vis This is a super simple visualization toolbox (script) for transformer attention visualization ✌ 1. How to prepare your attention m
Trained T5 and T5-large model for creating keywords from text
text to keywords Trained T5-base and T5-large model for creating keywords from text. Supported languages: ru Pretraining Large version | Pretraining B
PyTorch GPU implementation of the ES-RNN model for time series forecasting
Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series
A simple flask application to collect annotations for the Turing Change Point Dataset, a benchmark dataset for change point detection algorithms
AnnotateChange Welcome to the repository of the "AnnotateChange" application. This application was created to collect annotations of time series data
Analyzed the data of VISA applicants to build a predictive model to facilitate the process of VISA approvals.
Analyzed the data of Visa applicants, built a predictive model to facilitate the process of visa approvals, and based on important factors that significantly influence the Visa status recommended a suitable profile for the applicants for whom the visa should be certified or denied.
Medical appointments No-Show classifier
Medical Appointments No-shows Why do 20% of patients miss their scheduled appointments? A person makes a doctor appointment, receives all the instruct
Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform sign language recognition.
Sign Language Recognition Service This is a Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform s
Adds timm pretrained backbone to pytorch's FasterRcnn model
timmFasterRcnn model_config.py - it returns the model,feat_sizes,output channel and the feat layer names, which is reqd by the Add_FPN.py file Add_FP
Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort
Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort
Full-Stack application that visualizes amusement park safety.
Amusement Park Ride Safety Analysis Project Proposal We have chosen to look into amusement park data to explore ride safety relationships visually, in
A simple wrapper to analyse and visualise reinforcement learning agents' behaviour in the environment.
Visrl Visrl (pronounced "visceral") is a simple wrapper to analyse and visualise reinforcement learning agents' behaviour in the environment. Reinforc
A python visualization of the A* path finding algorithm
A python visualization of the A* path finding algorithm. It allows you to pick your start, end location and make obstacles and then view the process of finding the shortest path. You can also choose to include or exclude diagonal movement.
General Assembly's 2015 Data Science course in Washington, DC
DAT8 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (8/18/15 - 10/29/15). Instructor: Kevin Markham (
Largest list of models for Core ML (for iOS 11+)
Since iOS 11, Apple released Core ML framework to help developers integrate machine learning models into applications. The official documentation We'v
Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation
Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation
The implementation of the lifelong infinite mixture model
Lifelong infinite mixture model 📋 This is the implementation of the Lifelong infinite mixture model 📋 Accepted by ICCV 2021 Title : Lifelong Infinit
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices
deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen
Django CMS Project for quicksetup with minimal installation process.
Django CMS Project for quicksetup with minimal installation process.
EfficientMPC - Efficient Model Predictive Control Implementation
efficientMPC Efficient Model Predictive Control Implementation The original algo
ShortenURL-model - The model layer class for shorten url service
ShortenURL Model The model layer class for shorten URL service Usage Complete th
MNE: Magnetoencephalography (MEG) and Electroencephalography (EEG) in Python
MNE-Python MNE-Python software is an open-source Python package for exploring, visualizing, and analyzing human neurophysiological data such as MEG, E
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)
PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J
PyMove is a Python library to simplify queries and visualization of trajectories and other spatial-temporal data
Use PyMove and go much further Information Package Status License Python Version Platforms Build Status PyPi version PyPi Downloads Conda version Cond
Bottom-up attention model for image captioning and VQA, based on Faster R-CNN and Visual Genome
bottom-up-attention This code implements a bottom-up attention model, based on multi-gpu training of Faster R-CNN with ResNet-101, using object and at
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.
Code for the paper "Jukebox: A Generative Model for Music"
Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta
This project deals with a simplified version of a more general problem of Aspect Based Sentiment Analysis.
Aspect_Based_Sentiment_Extraction Created on: 5th Jan, 2022. This project deals with an important field of Natural Lnaguage Processing - Aspect Based
Iris prediction model is used to classify iris species created julia's DecisionTree, DataFrames, JLD2, PlotlyJS and Statistics packages.
Iris Species Predictor Iris prediction is used to classify iris species using their sepal length, sepal width, petal length and petal width created us
This code is 3d-CNN model that can predict environmental value
Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu
An interactive DNN Model deployed on web that predicts the chance of heart failure for a patient with an accuracy of 98%
Heart Failure Predictor About A Web UI deployed Dense Neural Network Model Made using Tensorflow that predicts whether the patient is healthy or has c
Simple web app example serving a PyTorch model using streamlit and FastAPI
streamlit-fastapi-model-serving Simple example of usage of streamlit and FastAPI for ML model serving described on this blogpost and PyConES 2020 vide
Reinforcement learning algorithms in RLlib
raylab Reinforcement learning algorithms in RLlib and PyTorch. Installation pip install raylab Quickstart Raylab provides agents and environments to b
Easy genetic ancestry predictions in Python
ezancestry Easily visualize your direct-to-consumer genetics next to 2500+ samples from the 1000 genomes project. Evaluate the performance of a custom
This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to generate a dynamic forecast from your own data.
📈 Automated Time Series Forecasting Background: This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to gene
GPT-2 Model for Leetcode Questions in python
Leetcode using AI 🤖 GPT-2 Model for Leetcode Questions in python New demo here: https://huggingface.co/spaces/gagan3012/project-code-py Note: the Ans
JupyterHub extension for ContainDS Dashboards
ContainDS Dashboards for JupyterHub A Dashboard publishing solution for Data Science teams to share results with decision makers. Run a private on-pre
Streamlit Component for rendering Folium maps
streamlit-folium This Streamlit Component is a work-in-progress to determine what functionality is desirable for a Folium and Streamlit integration. C
Honor's thesis project analyzing whether the GPT-2 model can more effectively generate free-verse or structured poetry.
gpt2-poetry The following code is for my senior honor's thesis project, under the guidance of Dr. Keith Holyoak at the University of California, Los A
Pytorch implementation of the popular Improv RNN model originally proposed by the Magenta team.
Pytorch Implementation of Improv RNN Overview This code is a pytorch implementation of the popular Improv RNN model originally implemented by the Mage
Benchmarks for Model-Based Optimization
Design-Bench Design-Bench is a benchmarking framework for solving automatic design problems that involve choosing an input that maximizes a black-box
Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling
Fast-Partial-Ranking-MNL This repo provides a PyTorch implementation for the CopulaGNN models as described in the following paper: Fast Learning of MN
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".
cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.
CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr
ESMAC diags - Earth System Model Aerosol-Cloud Diagnostics Package
Earth System Model Aerosol-Cloud Diagnostics Package This Earth System Model (ES
CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.
CoMoGAN: Continuous Model-guided Image-to-Image Translation Official repository. Paper CoMoGAN: continuous model-guided image-to-image translation [ar
An Unpaired Sketch-to-Photo Translation Model
Unpaired-Sketch-to-Photo-Translation We have released our code at https://github.com/rt219/Unsupervised-Sketch-to-Photo-Synthesis This project is the
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks
Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri
AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation
AttentionGAN-v2 for Unpaired Image-to-Image Translation AttentionGAN-v2 Framework The proposed generator learns both foreground and background attenti
A unified framework to jointly model images, text, and human attention traces.
connect-caption-and-trace This repository contains the reference code for our paper Connecting What to Say With Where to Look by Modeling Human Attent
LaBERT - A length-controllable and non-autoregressive image captioning model.
Length-Controllable Image Captioning (ECCV2020) This repo provides the implemetation of the paper Length-Controllable Image Captioning. Install conda
Moer Grounded Image Captioning by Distilling Image-Text Matching Model
Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse
DCGAN-tensorflow - A tensorflow implementation of Deep Convolutional Generative Adversarial Networks
DCGAN in Tensorflow Tensorflow implementation of Deep Convolutional Generative Adversarial Networks which is a stabilize Generative Adversarial Networ
Deep Inside Convolutional Networks - This is a caffe implementation to visualize the learnt model
Deep Inside Convolutional Networks This is a caffe implementation to visualize the learnt model. Part of a class project at Georgia Tech Problem State
Tensorflow implementation of soft-attention mechanism for video caption generation.
SA-tensorflow Tensorflow implementation of soft-attention mechanism for video caption generation. An example of soft-attention mechanism. The attentio
DeepSpeech - Easy-to-use Speech Toolkit including SOTA ASR pipeline, influential TTS with text frontend and End-to-End Speech Simultaneous Translation.
(简体中文|English) Quick Start | Documents | Models List PaddleSpeech is an open-source toolkit on PaddlePaddle platform for a variety of critical tasks i
NLP-Project - Used an API to scrape 2000 reddit posts, then used NLP analysis and created a classification model to mixed succcess
Project 3: Web APIs & NLP Problem Statement How do r/Libertarian and r/Neoliberal differ on Biden post-inaguration? The goal of the project is to see
Lending-Club-Loans - Using TensorFlow to create an ANN model to predict whether people would charge off or pay back their loans.
Lending Club Loans: Brief Introduction LendingClub is a US peer-to-peer lending company, headquartered in San Francisco, California.[3] It was the fir
Churn-Prediction-Project - In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class.
Churn-Prediction-Project In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class. Project in
PenguinSpeciesPredictionML - Basic model to predict Penguin species based on beak size and sex.
Penguin Species Prediction (ML) 🐧 👨🏽💻 What? 💻 This project is a basic model using sklearn methods to predict Penguin species based on beak size
Stroke-predictions-ml-model - Machine learning model to predict individuals chances of having a stroke
stroke-predictions-ml-model machine learning model to predict individuals chance
Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code
Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code.
Peloton Stats to Google Sheets with Data Visualization through Seaborn and Plotly
Peloton Stats to Google Sheets with Data Visualization through Seaborn and Plotly Problem: 2 peloton users were looking for a way to track their metri
Pytorch-3dunet - 3D U-Net model for volumetric semantic segmentation written in pytorch
pytorch-3dunet PyTorch implementation 3D U-Net and its variants: Standard 3D U-Net based on 3D U-Net: Learning Dense Volumetric Segmentation from Spar
Data-science-on-gcp - Source code accompanying book: Data Science on the Google Cloud Platform, Valliappa Lakshmanan, O'Reilly 2017
data-science-on-gcp Source code accompanying book: Data Science on the Google Cloud Platform, 2nd Edition Valliappa Lakshmanan O'Reilly, Jan 2022 Bran
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.
A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers
NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥
NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning
Speech-Emotion-Analyzer - The neural network model is capable of detecting five different male/female emotions from audio speeches. (Deep Learning, NLP, Python)
Speech Emotion Analyzer The idea behind creating this project was to build a machine learning model that could detect emotions from the speech we have
KoBERT - Korean BERT pre-trained cased (KoBERT)
KoBERT KoBERT Korean BERT pre-trained cased (KoBERT) Why'?' Training Environment Requirements How to install How to use Using with PyTorch Using with
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework
Lolviz - A simple Python data-structure visualization tool for lists of lists, lists, dictionaries; primarily for use in Jupyter notebooks / presentations
lolviz By Terence Parr. See Explained.ai for more stuff. A very nice looking javascript lolviz port with improvements by Adnan M.Sagar. A simple Pytho
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.
Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+
Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t
Modified prey-predator system - Modified prey–predator model describes the rate of change for each species by adding coupling terms.
Modified prey-predator system We aim to study the behaviors of the modified prey–predator model and establish the effects of several parameters that p
Notebooks for computing approximations to the prime counting function using Riemann's formula.
Notebooks for computing approximations to the prime counting function using Riemann's formula.
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.
Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.
Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.
Price-Prediction-For-a-Dream-Home ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL Import all the dependencies of the p
Advanced_Data_Visualization_Tools - The present hands-on lab mainly uses Immigration to Canada dataset and employs advanced visualization tools such as word cloud, and waffle plot to display relations between features within the dataset.
Hands-on Practice Learning Lab for Data Science Overview This hands on practice lab is a part of Data Visualization with Python course offered by Cour
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.
Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions