1770 Repositories
Python neural-textures Libraries
PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks
PyDEns PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks. With PyDEns one can solve PD
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation
NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni
Sparse Physics-based and Interpretable Neural Networks
Sparse Physics-based and Interpretable Neural Networks for PDEs This repository contains the code and manuscript for research done on Sparse Physics-b
Implementation of Research Paper "Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation"
Zero-DCE and Zero-DCE++(Lite architechture for Mobile and edge Devices) Papers Abstract The paper presents a novel method, Zero-Reference Deep Curve E
Official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting
1 SNAS4MTF This repo is the official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting. 1.1 The frame
An implementation of quantum convolutional neural network with MindQuantum. Huawei, classifying MNIST dataset
关于实现的一点说明 山东大学 2020级 苏博南 www.subonan.com 文件说明 tools.py 这里面主要有两个函数: resize(a, lenb) 这其实是我找同学写的一个小算法hhh。给出一个$28\times 28$的方阵a,返回一个$lenb\times lenb$的方阵。因
A foreign language learning aid using a neural network to predict probability of translating foreign words
Langy Langy is a reading-focused foreign language learning aid orientated towards young children. Reading is an activity that every child knows. It is
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.03670
A web application using [FastAPI + streamlit + Docker] Neural Style Transfer (NST) refers to a class of software algorithms that manipulate digital images
Neural Style Transfer Web App - [FastAPI + streamlit + Docker] NST - application based on the Perceptual Losses for Real-Time Style Transfer and Super
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version
Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende
An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022
Dual Correlation Reduction Network An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022. Any
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification
Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.
A high-performance distributed deep learning system targeting large-scale and automated distributed training.
HETU Documentation | Examples Hetu is a high-performance distributed deep learning system targeting trillions of parameters DL model training, develop
Code for "Typilus: Neural Type Hints" PLDI 2020
Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and
AI4Good project for detecting waste in the environment
Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in
The source code of the paper "SHGNN: Structure-Aware Heterogeneous Graph Neural Network"
SHGNN: Structure-Aware Heterogeneous Graph Neural Network The source code and dataset of the paper: SHGNN: Structure-Aware Heterogeneous Graph Neural
Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network
3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).
PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear
Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts
DataSelection-NMT Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts Quick update: The paper got accepted o
Programming with Neural Surrogates of Programs
Programming with Neural Surrogates of Programs
Twin-deep neural network for semi-supervised learning of materials properties
Deep Semi-Supervised Teacher-Student Material Synthesizability Prediction Citation: Semi-supervised teacher-student deep neural network for materials
Centroid-UNet is deep neural network model to detect centroids from satellite images.
Centroid UNet - Locating Object Centroids in Aerial/Serial Images Introduction Centroid-UNet is deep neural network model to detect centroids from Aer
PyG (PyTorch Geometric) - A library built upon PyTorch to easily write and train Graph Neural Networks (GNNs)
PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.
Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"
Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics @WIFS2021 (Montpellier, France) Rony Abecidan, Vincent Itier, Jeremie Boulan
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"
LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and
PyTorch implementation of normalizing flow models
PyTorch implementation of normalizing flow models
A PyTorch library and evaluation platform for end-to-end compression research
CompressAI CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research. CompressAI currently provides: c
A library for researching neural networks compression and acceleration methods.
A library for researching neural networks compression and acceleration methods.
Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition - NeurIPS2021
Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition Project Page | Video | Paper Implementation for Neural-PIL. A novel method wh
A `Neural = Symbolic` framework for sound and complete weighted real-value logic
Logical Neural Networks LNNs are a novel Neuro = symbolic framework designed to seamlessly provide key properties of both neural nets (learning) and s
A small library for doing fluid simulation with neural networks.
Neural Fluid Fields This is a small library for doing fluid simulation with neural fields. Check out our review paper, Neural Fields in Visual Computi
Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"
Light Field Networks Project Page | Paper | Data | Pretrained Models Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Dur
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)
Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o
Plenoxels: Radiance Fields without Neural Networks
Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be
A modular PyTorch library for optical flow estimation using neural networks
A modular PyTorch library for optical flow estimation using neural networks
i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery
i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery This is a public code repository for the publication: i-SpaSP: Structured Neural Pruning
The source code for Adaptive Kernel Graph Neural Network at AAAI2022
AKGNN The source code for Adaptive Kernel Graph Neural Network at AAAI2022. Please cite our paper if you think our work is helpful to you: @inproceedi
This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural tree born form a large search space
SeBoW: Self-Born Wiring for neural trees(PaddlePaddle version) This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"
Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u
Supplemental learning materials for "Fourier Feature Networks and Neural Volume Rendering"
Fourier Feature Networks and Neural Volume Rendering This repository is a companion to a lecture given at the University of Cambridge Engineering Depa
Plenoxels: Radiance Fields without Neural Networks, Code release WIP
Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be
[KDD 2021, Research Track] DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neural Networks
DiffMG This repository contains the code for our KDD 2021 Research Track paper: DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neura
Experiments for Neural Flows paper
Neural Flows: Efficient Alternative to Neural ODEs [arxiv] TL;DR: We directly model the neural ODE solutions with neural flows, which is much faster a
Neural search engine for AI papers
Papers search Neural search engine for ML papers. Demo Usage is simple: input an abstract, get the matching papers. The following demo also showcases
Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21)
AdvRush Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21) Environmental Set-up Python == 3.6.12, PyTorch =
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"
LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization
CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090
Pairwise learning neural link prediction for ogb link prediction
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t
Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.
LitMatter A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs. How to use Clone this repository and
The best solution of the Weather Prediction track in the Yandex Shifts challenge
yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re
RID-Noise: Towards Robust Inverse Design under Noisy Environments
This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B
Unsupervised Representation Learning via Neural Activation Coding
Neural Activation Coding This repository contains the code for the paper "Unsupervised Representation Learning via Neural Activation Coding" published
A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics, sequence features, and user profiles.
CCasGNN A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics,
"Graph Neural Controlled Differential Equations for Traffic Forecasting", AAAI 2022
Graph Neural Controlled Differential Equations for Traffic Forecasting Setup Python environment for STG-NCDE Install python environment $ conda env cr
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.
NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization
CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches
Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa
PyTorch implementation for OCT-GAN Neural ODE-based Conditional Tabular GANs (WWW 2021)
OCT-GAN: Neural ODE-based Conditional Tabular GANs (OCT-GAN) Code for reproducing the experiments in the paper: Jayoung Kim*, Jinsung Jeon*, Jaehoon L
Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.
Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.
Papers about explainability of GNNs
Papers about explainability of GNNs
Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".
:speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification
Neural style in TensorFlow! 🎨
neural-style An implementation of neural style in TensorFlow. This implementation is a lot simpler than a lot of the other ones out there, thanks to T
"Neural Turing Machine" in Tensorflow
Neural Turing Machine in Tensorflow Tensorflow implementation of Neural Turing Machine. This implementation uses an LSTM controller. NTM models with m
My tensorflow implementation of "A neural conversational model", a Deep learning based chatbot
Deep Q&A Table of Contents Presentation Installation Running Chatbot Web interface Results Pretrained model Improvements Upgrade Presentation This wor
Neural Network to colorize grayscale images
#colornet Neural Network to colorize grayscale images Results Grayscale Prediction Ground Truth Eiji K used colornet for anime colorization Sources Au
Neural Caption Generator with Attention
Neural Caption Generator with Attention Tensorflow implementation of "Show
Convolutional Neural Network for Text Classification in Tensorflow
This code belongs to the "Implementing a CNN for Text Classification in Tensorflow" blog post. It is slightly simplified implementation of Kim's Convo
Tensorflow implementation of Character-Aware Neural Language Models.
Character-Aware Neural Language Models Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found h
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices
Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In
CNN visualization tool in TensorFlow
tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad
Deep Learning & 3D Convolutional Neural Networks for Speaker Verification
TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation This repositor
Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks
Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks - Official Project Page This repository contains the code develope
Hierarchical Attentive Recurrent Tracking
Hierarchical Attentive Recurrent Tracking This is an official Tensorflow implementation of single object tracking in videos by using hierarchical atte
A Tensorfflow implementation of Attend, Infer, Repeat
Attend, Infer, Repeat: Fast Scene Understanding with Generative Models This is an unofficial Tensorflow implementation of Attend, Infear, Repeat (AIR)
Classify music genre from a 10 second sound stream using a Neural Network.
MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in
Run Keras models in the browser, with GPU support using WebGL
**This project is no longer active. Please check out TensorFlow.js.** The Keras.js demos still work but is no longer updated. Run Keras models in the
Pytorch implementation for A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose
A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose Paper | Website | Data A-NeRF: Articulated Neural Radiance F
Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.
Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.
NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of
Training Structured Neural Networks Through Manifold Identification and Variance Reduction
Training Structured Neural Networks Through Manifold Identification and Variance Reduction This repository is a pytorch implementation of the Regulari
A repository for benchmarking neural vocoders by their quality and speed.
License The majority of VocBench is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Wavenet, Para
Steerable discovery of neural audio effects
Steerable discovery of neural audio effects Christian J. Steinmetz and Joshua D. Reiss Abstract Applications of deep learning for audio effects often
A simple library that implements CLIP guided loss in PyTorch.
pytorch_clip_guided_loss: Pytorch implementation of the CLIP guided loss for Text-To-Image, Image-To-Image, or Image-To-Text generation. A simple libr
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)
Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica
Alternatives to Deep Neural Networks for Function Approximations in Finance
Alternatives to Deep Neural Networks for Function Approximations in Finance Code companion repo Overview This is a repository of Python code to go wit
Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning
Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning
Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning"
CAPGNN Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning" Paper URL: https://ar
Fast Neural Representations for Direct Volume Rendering
Fast Neural Representations for Direct Volume Rendering Sebastian Weiss, Philipp Hermüller, Rüdiger Westermann This repository contains the code and s
A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS).
UniNAS A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS). under development (which happens mostly on our internal Gi
TC-GNN with Pytorch integration
TC-GNN (Running Sparse GNN on Dense Tensor Core on Ampere GPU) Cite this project and paper. @inproceedings{TC-GNN, title={TC-GNN: Accelerating Spars
PennyLane is a cross-platform Python library for differentiable programming of quantum computers
PennyLane is a cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural ne
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting
Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.
A Chinese to English Neural Model Translation Project
ZH-EN NMT Chinese to English Neural Machine Translation This project is inspired by Stanford's CS224N NMT Project Dataset used in this project: News C
An assignment from my grad-level data mining course demonstrating some experience with NLP/neural networks/Pytorch
NLP-Pytorch-Assignment An assignment from my grad-level data mining course (before I started personal projects) demonstrating some experience with NLP
🔪 Elimination based Lightweight Neural Net with Pretrained Weights
ELimNet ELimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task Removed top layers from pretrained Efficient
DiffWave is a fast, high-quality neural vocoder and waveform synthesizer.
DiffWave DiffWave is a fast, high-quality neural vocoder and waveform synthesizer. It starts with Gaussian noise and converts it into speech via itera
A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model
This repository contains the similarity metrics designed and evaluated in the paper, and instructions and code to re-run the experiments. Implementation in the deep-learning framework PyTorch
Neural HMMs are all you need (for high-quality attention-free TTS)
Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official
Source code for our paper "Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures"
Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (M