58 Repositories
Python noise Libraries
Package towards building Explainable Forecasting and Nowcasting Models with State-of-the-art Deep Neural Networks and Dynamic Factor Model on Time Series data sets with single line of code. Also, provides utilify facility for time-series signal similarities matching, and removing noise from timeseries signals.
DeepXF: Explainable Forecasting and Nowcasting with State-of-the-art Deep Neural Networks and Dynamic Factor Model Also, verify TS signal similarities
Official implementation of our paper "Learning to Bootstrap for Combating Label Noise"
Learning to Bootstrap for Combating Label Noise This repo is the official implementation of our paper "Learning to Bootstrap for Combating Label Noise
Pytorch implementation of "Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates"
Peer Loss functions This repository is the (Multi-Class & Deep Learning) Pytorch implementation of "Peer Loss Functions: Learning from Noisy Labels wi
PyTorch implementation of the paper: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features
Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features Estimate the noise transition matrix with f-mutual information. This co
A repo for Causal Imitation Learning under Temporally Correlated Noise
CausIL A repo for Causal Imitation Learning under Temporally Correlated Noise. Running Experiments To re-train an expert, run: python experts/train_ex
Mapomatic - Automatic mapping of compiled circuits to low-noise sub-graphs
mapomatic Automatic mapping of compiled circuits to low-noise sub-graphs Overvie
This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers."
Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers This repository contains code to run experiments in the paper "Signal Stre
Code for the CVPR2021 workshop paper "Noise Conditional Flow Model for Learning the Super-Resolution Space"
NCSR: Noise Conditional Flow Model for Learning the Super-Resolution Space Official NCSR training PyTorch Code for the CVPR2021 workshop paper "Noise
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach
Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning
Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning This repository provides an implementation of the paper Beta S
Self-Supervised Methods for Noise-Removal
SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of
Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.
Fully Adaptive Bayesian Algorithm for Data Analysis FABADA FABADA is a novel non-parametric noise reduction technique which arise from the point of vi
Statistical Random Number Generator Attack Against The Kirchhoff-law-johnson-noise (Kljn) Secure Key Exchange Protocol
Statistical Random Number Generator Attack Against The Kirchhoff-law-johnson-noise (Kljn) Secure Key Exchange Protocol
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)
ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v
The-White-Noise-Project - The project creates noise intentionally
The-White-Noise-Project High quality audio matters everywhere, even in noise. Be
The codebase for Data-driven general-purpose voice activity detection.
Data driven GPVAD Repository for the work in TASLP 2021 Voice activity detection in the wild: A data-driven approach using teacher-student training. S
PyTorch implementation of Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch
Code basis for the paper "Camera Condition Monitoring and Readjustment by means of Noise and Blur" (2021)
Camera Condition Monitoring and Readjustment by means of Noise and Blur This repository contains the source code of the paper: Wischow, M., Gallego, G
Riemann Noise Injection With PyTorch
Riemann Noise Injection - PyTorch A module for modeling GAN noise injection based on Riemann geometry, as described in Ruili Feng, Deli Zhao, and Zhen
RID-Noise: Towards Robust Inverse Design under Noisy Environments
This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B
Noise Conditional Score Networks (NeurIPS 2019, Oral)
Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat
The official implementation of Relative Uncertainty Learning for Facial Expression Recognition
Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"
CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"
CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2
Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment".
#backdoor-HSIC (bd_HSIC) Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment". To generate
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.
BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf
Implementation of OpenAI paper with Simple Noise Scale on Fastai V2
README Implementation of OpenAI paper "An Empirical Model of Large-Batch Training" for Fastai V2. The code is based on the batch size finder implement
DivNoising is an unsupervised denoising method to generate diverse denoised samples for any noisy input image. This repository contains the code to reproduce the results reported in the paper https://openreview.net/pdf?id=agHLCOBM5jP
DivNoising: Diversity Denoising with Fully Convolutional Variational Autoencoders Mangal Prakash1, Alexander Krull1,2, Florian Jug2 1Authors contribut
[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )
GNeRF This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions
RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation (CIKM'17)
RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation This is the implementation of RATE: Overcoming Noise and Spar
SASE : Self-Adaptive noise distribution network for Speech Enhancement with heterogeneous data of Cross-Silo Federated learning
SASE : Self-Adaptive noise distribution network for Speech Enhancement with heterogeneous data of Cross-Silo Federated learning We propose a SASE mode
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w
Implementation for the paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR2021).
Invertible Image Denoising This is the PyTorch implementation of paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR 20
Image Processing - Make noise images clean
影像處理-影像降躁化(去躁化) (Image Processing - Make Noise Images Clean) 得力於電腦效能的大幅提升以及GPU的平行運算架構,讓我們能夠更快速且有效地訓練AI,並將AI技術應用於不同領域。本篇將帶給大家的是 「將深度學習應用於影像處理中的影像降躁化 」,
PyTorch implementation of "A Two-Stage End-to-End System for Speech-in-Noise Hearing Aid Processing"
Implementation of the Sheffield entry for the first Clarity enhancement challenge (CEC1) This repository contains the PyTorch implementation of "A Two
Official implementation of "Open-set Label Noise Can Improve Robustness Against Inherent Label Noise" (NeurIPS 2021)
Open-set Label Noise Can Improve Robustness Against Inherent Label Noise NeurIPS 2021: This repository is the official implementation of ODNL. Require
PyTorch implementation of SmoothGrad: removing noise by adding noise.
SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro
Relative Uncertainty Learning for Facial Expression Recognition
Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc
Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System
Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System This repository contains code for the paper Schultheis,
Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod (2012) Jump tests for noisy high frequency data
JumpDetectR Name of QuantLet : JumpDetectR Published in : 'To be published as "Jump dynamics in high frequency crypto markets"' Description : 'Scala
Noise supression using deep filtering
DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat
Blue noise image stippling in Processing (requires GPU)
Blue noise image stippling in Processing (requires GPU)
A curated (most recent) list of resources for Learning with Noisy Labels
A curated (most recent) list of resources for Learning with Noisy Labels
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training
RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p
The purpose of this code base is to add a specified signal-to-noise ratio noise from MUSAN dataset to a pure speech signal and to generate far-field speech data using room impulse response data from BUT Speech@FIT Reverb Database.
Add_noise_and_rir_to_speech The purpose of this code base is to add a specified signal-to-noise ratio noise from MUSAN dataset to a pure speech signal
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)
Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen
The Noise Contrastive Estimation for softmax output written in Pytorch
An NCE implementation in pytorch About NCE Noise Contrastive Estimation (NCE) is an approximation method that is used to work around the huge computat
Learning to See by Looking at Noise
Learning to See by Looking at Noise This is the official implementation of Learning to See by Looking at Noise. In this work, we investigate a suite o
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)
2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"
Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari
NR-GAN: Noise Robust Generative Adversarial Networks
NR-GAN: Noise Robust Generative Adversarial Networks (CVPR 2020) This repository provides PyTorch implementation for noise robust GAN (NR-GAN). NR-GAN
(L2ID@CVPR2021) Boosting Co-teaching with Compression Regularization for Label Noise
Nested-Co-teaching (L2ID@CVPR2021) Pytorch implementation of paper "Boosting Co-teaching with Compression Regularization for Label Noise" [PDF] If our
Tilted Empirical Risk Minimization (ICLR '21)
Tilted Empirical Risk Minimization This repository contains the implementation for the paper Tilted Empirical Risk Minimization ICLR 2021 Empirical ri
DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.
Differentiable Model Compression via Pseudo Quantization Noise DiffQ performs differentiable quantization using pseudo quantization noise. It can auto
Python library for handling audio datasets.
AUDIOMATE Audiomate is a library for easy access to audio datasets. It provides the datastructures for accessing/loading different datasets in a gener
PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement."
FullSubNet This Git repository for the official PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech E