72 Repositories
Python outlier-removal Libraries
Official code for "Towards An End-to-End Framework for Flow-Guided Video Inpainting" (CVPR2022)
E2FGVI (CVPR 2022) English | 简体中文 This repository contains the official implementation of the following paper: Towards An End-to-End Framework for Flo
A Python Library for Graph Outlier Detection (Anomaly Detection)
PyGOD is a Python library for graph outlier detection (anomaly detection). This exciting yet challenging field has many key applications, e.g., detect
ML powered analytics engine for outlier detection and root cause analysis.
Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C
VOS: Learning What You Don’t Know by Virtual Outlier Synthesis
VOS This is the source code accompanying the paper VOS: Learning What You Don’t
Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut
You Only Cut Once (YOCO) YOCO is a simple method/strategy of performing augmenta
Haze Removal can remove slight to extreme cases of haze affecting an image
Haze Removal can remove slight to extreme cases of haze affecting an image. Its most typical use is for landscape photography where the haze causes low contrast and low saturation, but it can also be used to improve images taken during rainy and foggy conditions.
Self-Supervised Methods for Noise-Removal
SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of
An open-source outlier detection package by Getcontact Data Team
pyfbad The pyfbad library supports anomaly detection projects. An end-to-end anomaly detection application can be written using the source codes of th
Algorithms for outlier, adversarial and drift detection
Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline d
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)
Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin
A python library for time-series smoothing and outlier detection in a vectorized way.
tsmoothie A python library for time-series smoothing and outlier detection in a vectorized way. Overview tsmoothie computes, in a fast and efficient w
Anomaly detection related books, papers, videos, and toolboxes
Anomaly Detection Learning Resources Outlier Detection (also known as Anomaly Detection) is an exciting yet challenging field, which aims to identify
RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020)
RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020) Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng [PDF] [Supplementary M
Virtual Dance Reality Stage: a feature that offers you to share a stage with another user virtually
Portrait Segmentation using Tensorflow This script removes the background from an input image. You can read more about segmentation here Setup The scr
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"
LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and
Existing Literature about Machine Unlearning
Machine Unlearning Papers 2021 Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021. Bourtoule et al. Machine Unlearning. In IEEE Symp
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"
LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"
Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal
Official pytorch code for SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal
SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal This is the official pytorch code for SSAT: A Symmetric Semantic-
Deep learning model for EEG artifact removal
DeepSeparator Introduction Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to elimina
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.
UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT
ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation
ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation (Accepted by BMVC'21) Abstract: Images acquir
Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"
OANet implementation Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by
Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in 3D.
ApproxMVBB Status Build UnitTests Homepage Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr
Image De-raining Using a Conditional Generative Adversarial Network
Image De-raining Using a Conditional Generative Adversarial Network [Paper Link] [Project Page] He Zhang, Vishwanath Sindagi, Vishal M. Patel In this
MiniSom is a minimalistic implementation of the Self Organizing Maps
MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N
Luminaire is a python package that provides ML driven solutions for monitoring time series data.
A hands-off Anomaly Detection Library Table of contents What is Luminaire Quick Start Time Series Outlier Detection Workflow Anomaly Detection for Hig
Implementation for the paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR2021).
Invertible Image Denoising This is the PyTorch implementation of paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR 20
Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation
Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation Our paper is accepted by ICCV2021. Picture: Overview of the proposed Plug-an
edaSQL is a library to link SQL to Exploratory Data Analysis and further more in the Data Engineering.
edaSQL is a python library to bridge the SQL with Exploratory Data Analysis where you can connect to the Database and insert the queries. The query results can be passed to the EDA tool which can give greater insights to the user.
MPRNet-Cloud-removal: Progressive cloud removal
MPRNet-Cloud-removal Progressive cloud removal Requirements 1.Pytorch = 1.0 2.Python 3 3.NVIDIA GPU + CUDA 9.0 4.Tensorboard Installation 1.Clone the
This is an auto-ML tool specialized in detecting of outliers
Auto-ML tool specialized in detecting of outliers Description This tool will allows you, with a Dash visualization, to compare 10 models of machine le
(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)
IsoTree Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify
The Official Repository for "Generalized OOD Detection: A Survey"
Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec
The Official Repository for "Generalized OOD Detection: A Survey"
Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec
BackgroundRemover lets you Remove Background from images and video with a simple command line interface
BackgroundRemover BackgroundRemover is a command line tool to remove background from video and image, made by nadermx to power https://BackgroundRemov
A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku.
Automatic_Background_Remover A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku. 👉 https:
Code for the paper "Location-aware Single Image Reflection Removal"
Location-aware Single Image Reflection Removal The shown images are provided by the datasets from IBCLN, ERRNet, SIR2 and the Internet images. The cod
ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)
ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet) (
4K videos with annotated masks in our ICCV2021 paper 'Internal Video Inpainting by Implicit Long-range Propagation'.
Annotated 4K Videos paper | project website | code | demo video 4K videos with annotated object masks in our ICCV2021 paper: Internal Video Inpainting
This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning"
CSP_Deep_EEG This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning" {https://www
Semi-supervised Transfer Learning for Image Rain Removal. In CVPR 2019.
Semi-supervised Transfer Learning for Image Rain Removal This package contains the Python implementation of "Semi-supervised Transfer Learning for Ima
Python implementation of "Single Image Haze Removal Using Dark Channel Prior"
##Dependencies pillow(~2.6.0) Numpy(~1.9.0) If the scripts throw AttributeError: __float__, make sure your pillow has jpeg support e.g. try: $ sudo ap
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)
Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3
A Multilingual Latent Dirichlet Allocation (LDA) Pipeline with Stop Words Removal, n-gram features, and Inverse Stemming, in Python.
Multilingual Latent Dirichlet Allocation (LDA) Pipeline This project is for text clustering using the Latent Dirichlet Allocation (LDA) algorithm. It
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)
Certifiable Outlier-Robust Geometric Perception
Certifiable Outlier-Robust Geometric Perception About This repository holds the implementation for certifiably solving outlier-robust geometric percep
Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).
arXiv, porject page, paper Blind Image Decomposition (BID) Blind Image Decomposition is a novel task. The task requires separating a superimposed imag
This repository contains the code and models for the following paper.
DC-ShadowNet Introduction This is an implementation of the following paper DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised
Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather
LiDAR fog simulation Created by Martin Hahner at the Computer Vision Lab of ETH Zurich. This is the official code release of the paper Fog Simulation
a decompilation of NAP36 the widevine removal software for amz and nf used by p2p groups until it stoped working due to it using expired cdm keys
NAP36 a decompilation of NAP36 the widevine removal software for amz and nf used by p2p groups until it stoped working due to it useing expired cdm ke
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"
Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation
Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project
We propose a new method for effective shadow removal by regarding it as an exposure fusion problem.
Auto-exposure fusion for single-image shadow removal We propose a new method for effective shadow removal by regarding it as an exposure fusion proble
【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal
From Rain Generation to Rain Removal (CVPR2021) Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng [PDF&&Supplementary Material]
Outlier Exposure with Confidence Control for Out-of-Distribution Detection
OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De
A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.
OpenHands OpenHands is a gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor. Currently the system can iden
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence
In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training process.
An Unsupervised Graph-based Toolbox for Fraud Detection
An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)
Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)
Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465
PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",
SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]
SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021] Pdf: https://openreview.net/forum?id=v5gjXpmR8J Code for our ICLR 2021 pape
Rembg is a tool to remove images background.
Rembg is a tool to remove images background.
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"
Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].
Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow
Find dead Python code
Vulture - Find dead code Vulture finds unused code in Python programs. This is useful for cleaning up and finding errors in large code bases. If you r
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)
Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca
Find dead Python code
Vulture - Find dead code Vulture finds unused code in Python programs. This is useful for cleaning up and finding errors in large code bases. If you r