262 Repositories
Python policy-gradient-with-baseline Libraries
Custom TensorFlow2 implementations of forward and backward computation of soft-DTW algorithm in batch mode.
Batch Soft-DTW(Dynamic Time Warping) in TensorFlow2 including forward and backward computation Custom TensorFlow2 implementations of forward and backw
ML Optimizers from scratch using JAX
Toy implementations of some popular ML optimizers using Python/JAX
Baseline code for Korean open domain question answering(ODQA)
Open-Domain Question Answering(ODQA)는 다양한 주제에 대한 문서 집합으로부터 자연어 질의에 대한 답변을 찾아오는 task입니다. 이때 사용자 질의에 답변하기 위해 주어지는 지문이 따로 존재하지 않습니다. 따라서 사전에 구축되어있는 Knowl
On the model-based stochastic value gradient for continuous reinforcement learning
On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a
Probabilistic Gradient Boosting Machines
PGBM Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Air
The official implementation of You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient.
You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient (paper) @misc{zhang2021compress,
Code release to accompany paper "Geometry-Aware Gradient Algorithms for Neural Architecture Search."
Geometry-Aware Gradient Algorithms for Neural Architecture Search This repository contains the code required to run the experiments for the DARTS sear
FairMOT - A simple baseline for one-shot multi-object tracking
FairMOT - A simple baseline for one-shot multi-object tracking
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models.
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models. The library is a collection of Keras models and supports classification, regression and ranking. TF-DF is a TensorFlow wrapper around the Yggdrasil Decision Forests C++ libraries. Models trained with TF-DF are compatible with Yggdrasil Decision Forests' models, and vice versa.
AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code
AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code
Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps[AAAI2021]
Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps Here is the code for ssbassline model. We also provide OCR results/features/mode
百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline
项目说明: 百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline 比赛链接:https://aistudio.baidu.com/aistudio/competition/detail/66?isFromLuge=true 官方的baseline版本是基于paddlepadd
[ECCV 2020] Gradient-Induced Co-Saliency Detection
Gradient-Induced Co-Saliency Detection Zhao Zhang*, Wenda Jin*, Jun Xu, Ming-Ming Cheng ⭐ Project Home » The official repo of the ECCV 2020 paper Grad
Paddle-RLBooks is a reinforcement learning code study guide based on pure PaddlePaddle.
Paddle-RLBooks Welcome to Paddle-RLBooks which is a reinforcement learning code study guide based on pure PaddlePaddle. 欢迎来到Paddle-RLBooks,该仓库主要是针对强化学
Implementation of paper Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoBERTa.
RoBERTaABSA This repo contains the code for NAACL 2021 paper titled Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoB
A collection of various RL algorithms like policy gradients, DQN and PPO. The goal of this repo will be to make it a go-to resource for learning about RL. How to visualize, debug and solve RL problems. I've additionally included playground.py for learning more about OpenAI gym, etc.
Reinforcement Learning (PyTorch) 🤖 + 🍰 = ❤️ This repo will contain PyTorch implementation of various fundamental RL algorithms. It's aimed at making
Official implementation of ETH-XGaze dataset baseline
ETH-XGaze baseline Official implementation of ETH-XGaze dataset baseline. ETH-XGaze dataset ETH-XGaze dataset is a gaze estimation dataset consisting
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms This repo contains the source code to reproduce the results in the paper A Close
Text Generation by Learning from Demonstrations
Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere
A version of nrsc5-gui that merges the interface developed by cmnybo with the architecture developed by zefie in order to start a new baseline that is not heavily dependent upon Python processing.
NRSC5-DUI is a graphical interface for nrsc5. It makes it easy to play your favorite FM HD radio stations using an RTL-SDR dongle. It will also displa
This repo is developed for Strong Baseline For Vehicle Re-Identification in Track 2 Ai-City-2021 Challenges
A STRONG BASELINE FOR VEHICLE RE-IDENTIFICATION This paper is accepted to the IEEE Conference on Computer Vision and Pattern Recognition Workshop(CVPR
2021搜狐校园文本匹配算法大赛baseline
sohu2021-baseline 2021搜狐校园文本匹配算法大赛baseline 简介 分享了一个搜狐文本匹配的baseline,主要是通过条件LayerNorm来增加模型的多样性,以实现同一模型处理不同类型的数据、形成不同输出的目的。 线下验证集F1约0.74,线上测试集F1约0.73。
[CVPRW 21] "BNN - BN = ? Training Binary Neural Networks without Batch Normalization", Tianlong Chen, Zhenyu Zhang, Xu Ouyang, Zechun Liu, Zhiqiang Shen, Zhangyang Wang
BNN - BN = ? Training Binary Neural Networks without Batch Normalization Codes for this paper BNN - BN = ? Training Binary Neural Networks without Bat
Validate all your Customer IAM Policies against AWS Access Analyzer - Policy Validation
✅ Access Analyzer - Batch Policy Validator This script will analyze using AWS Access Analyzer - Policy Validation all your account customer managed IA
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm
Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This
Policy and data administration, distribution, and real-time updates on top of Open Policy Agent
⚡ OPAL ⚡ Open Policy Administration Layer OPAL is an administration layer for Open Policy Agent (OPA), detecting changes to both policy and policy dat
This is my codes that can visualize the psnr image in testing videos.
CVPR2018-Baseline-PSNRplot This is my codes that can visualize the psnr image in testing videos. Future Frame Prediction for Anomaly Detection – A New
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).
This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1
A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading
A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.
Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc
Scalable, event-driven, deep-learning-friendly backtesting library
...Minimizing the mean square error on future experience. - Richard S. Sutton BTGym Scalable event-driven RL-friendly backtesting library. Build on
An introduction of Markov decision process (MDP) and two algorithms that solve MDPs (value iteration, policy iteration) along with their Python implementations.
Markov Decision Process A Markov decision process (MDP), by definition, is a sequential decision problem for a fully observable, stochastic environmen
Data Analysis Baseline Library
dabl The data analysis baseline library. "Mr Sanchez, are you a data scientist?" "I dabl, Mr president." Find more information on the website. State o
Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.
gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)
GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.
PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the
This is the source code of RPG (Reward-Randomized Policy Gradient)
RPG (Reward-Randomized Policy Gradient) Zhenggang Tang*, Chao Yu*, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang, Simon Shaolei Du, Yu Wang, Yi Wu (
Automatically compile an AWS Service Control Policy that ONLY allows AWS services that are compliant with your preferred compliance frameworks.
aws-allowlister Automatically compile an AWS Service Control Policy that ONLY allows AWS services that are compliant with your preferred compliance fr
🎯 A comprehensive gradient-free optimization framework written in Python
Solid is a Python framework for gradient-free optimization. It contains basic versions of many of the most common optimization algorithms that do not
A game theoretic approach to explain the output of any machine learning model.
SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allo
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.
Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista
Implements Gradient Centralization and allows it to use as a Python package in TensorFlow
Gradient Centralization TensorFlow This Python package implements Gradient Centralization in TensorFlow, a simple and effective optimization technique
DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos.
DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos A concise deep reinforcement learning libr
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning
NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch
PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping Paper: https://arxiv.org/abs/2102.06171.pdf Original code: htt
Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping
Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping
Fast and Easy Infinite Neural Networks in Python
Neural Tangents ICLR 2020 Video | Paper | Quickstart | Install guide | Reference docs | Release notes Overview Neural Tangents is a high-level neural
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.
Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l
Image morphing without reference points by applying warp maps and optimizing over them.
Differentiable Morphing Image morphing without reference points by applying warp maps and optimizing over them. Differentiable Morphing is machine lea
Modular Deep Reinforcement Learning framework in PyTorch. Companion library of the book "Foundations of Deep Reinforcement Learning".
SLM Lab Modular Deep Reinforcement Learning framework in PyTorch. Documentation: https://slm-lab.gitbook.io/slm-lab/ BeamRider Breakout KungFuMaster M
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a
Machine learning, in numpy
numpy-ml Ever wish you had an inefficient but somewhat legible collection of machine learning algorithms implemented exclusively in NumPy? No? Install
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.
Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista
[UNMAINTAINED] Automated machine learning for analytics & production
auto_ml Automated machine learning for production and analytics Installation pip install auto_ml Getting started from auto_ml import Predictor from au
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l
H2O is an Open Source, Distributed, Fast & Scalable Machine Learning Platform: Deep Learning, Gradient Boosting (GBM) & XGBoost, Random Forest, Generalized Linear Modeling (GLM with Elastic Net), K-Means, PCA, Generalized Additive Models (GAM), RuleFit, Support Vector Machine (SVM), Stacked Ensembles, Automatic Machine Learning (AutoML), etc.
H2O H2O is an in-memory platform for distributed, scalable machine learning. H2O uses familiar interfaces like R, Python, Scala, Java, JSON and the Fl