262 Repositories
Python policy-gradient-with-baseline Libraries
MagTape is a Policy-as-Code tool for Kubernetes that allows for evaluating Kubernetes resources against a set of defined policies to inform and enforce best practice configurations.
MagTape is a Policy-as-Code tool for Kubernetes that allows for evaluating Kubernetes resources against a set of defined policies to inform and enforce best practice configurations. MagTape includes variable policy enforcement, notifications, and targeted metrics.
Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.
Pano3D A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation Pano3D is a new benchmark for depth estimation from spherical panoramas. We
Gym environments used in the paper: "Developmental Reinforcement Learning of Control Policy of a Quadcopter UAV with Thrust Vectoring Rotors"
gym_multirotor Gym to train reinforcement learning agents on UAV platforms Quadrotor Tiltrotor Requirements This package has been tested on Ubuntu 18.
Safe Policy Optimization with Local Features
Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi
6D Grasping Policy for Point Clouds
GA-DDPG [website, paper] Installation git clone https://github.com/liruiw/GA-DDPG.git --recursive Setup: Ubuntu 16.04 or above, CUDA 10.0 or above, py
The ARCA23K baseline system
ARCA23K Baseline System This is the source code for the baseline system associated with the ARCA23K dataset. Details about ARCA23K and the baseline sy
Safe Policy Optimization with Local Features
Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)
Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can
(ICCV 2021 Oral) Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation.
DARS Code release for the paper "Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation", ICCV 2021
MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system
MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system Getting started To start working on this assignment, you should
PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch.
snn-localization repo PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch. Install Dependencies Orig
Trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI
Introduction This script trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI. In order to run this
This tool allows to automatically test for Content Security Policy bypass payloads.
CSPass This tool allows to automatically test for Content Security Policy bypass payloads. Usage [cspass]$ ./cspass.py -h usage: cspass.py [-h] [--no-
Official implementation of Generalized Data Weighting via Class-level Gradient Manipulation (NeurIPS 2021).
Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas
Baseline is a cross-platform library and command-line utility that creates file-oriented baselines of your systems.
Baselining, on steroids! Baseline is a cross-platform library and command-line utility that creates file-oriented baselines of your systems. The proje
Generalized Proximal Policy Optimization with Sample Reuse (GePPO)
Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene
Generalized Data Weighting via Class-level Gradient Manipulation
Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas
The command line interface for Gradient - Gradient is an an end-to-end MLOps platform
Gradient CLI Get started: Create Account • Install CLI • Tutorials • Docs Resources: Website • Blog • Support • Contact Sales Gradient is an an end-to
[NeurIPS 2021] Official implementation of paper "Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization".
Code for Coordinated Policy Optimization Webpage | Code | Paper | Talk (English) | Talk (Chinese) Hi there! This is the source code of the paper “Lear
Gradient representations in ReLU networks as similarity functions
Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator This is the official code repository for NeurIPS 2021 paper: CARMS: Categorica
Learning where to learn - Gradient sparsity in meta and continual learning
Learning where to learn - Gradient sparsity in meta and continual learning In this paper, we investigate gradient sparsity found by MAML in various co
Gradient Inversion with Generative Image Prior
Gradient Inversion with Generative Image Prior This repository is an implementation of "Gradient Inversion with Generative Image Prior", accepted to N
Iterative stochastic gradient descent (SGD) linear regressor with regularization
SGD-Linear-Regressor Iterative stochastic gradient descent (SGD) linear regressor with regularization Dataset: Kaggle “Graduate Admission 2” https://w
PyTorch implementation of "A Simple Baseline for Low-Budget Active Learning".
A Simple Baseline for Low-Budget Active Learning This repository is the implementation of A Simple Baseline for Low-Budget Active Learning. In this pa
An implementation of the proximal policy optimization algorithm
PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).
Off-policy continuous control in PyTorch, with RDPG, RTD3 & RSAC
arXiv technical report soon available. we are updating the readme to be as comprehensive as possible Please ask any questions in Issues, thanks. Intro
Set the draft security HTTP header Permissions-Policy (previously Feature-Policy) on your Django app.
django-permissions-policy Set the draft security HTTP header Permissions-Policy (previously Feature-Policy) on your Django app. Requirements Python 3.
Time Discretization-Invariant Safe Action Repetition for Policy Gradient Methods
Time Discretization-Invariant Safe Action Repetition for Policy Gradient Methods This repository is the official implementation of Seohong Park, Jaeky
Stochastic Gradient Trees implementation in Python
Stochastic Gradient Trees - Python Stochastic Gradient Trees1 by Henry Gouk, Bernhard Pfahringer, and Eibe Frank implementation in Python. Based on th
[WACV 2022] Contextual Gradient Scaling for Few-Shot Learning
CxGrad - Official PyTorch Implementation Contextual Gradient Scaling for Few-Shot Learning Sanghyuk Lee, Seunghyun Lee, and Byung Cheol Song In WACV 2
MEND: Model Editing Networks using Gradient Decomposition
MEND: Model Editing Networks using Gradient Decomposition Setup Environment This codebase uses Python 3.7.9. Other versions may work as well. Create a
Baseline model for Augmented Home Assistant
Dataset Preparation Step 1. Rename the Virtual-Home output directory to 'vh.[name]', for example: 'vh.door' Make sure the directory contains 100+ fram
A new mini-batch framework for optimal transport in deep generative models, deep domain adaptation, approximate Bayesian computation, color transfer, and gradient flow.
BoMb-OT Python3 implementation of the papers On Transportation of Mini-batches: A Hierarchical Approach and Improving Mini-batch Optimal Transport via
Project code for weakly supervised 3D object detectors using wide-baseline multi-view traffic camera data: WIBAM.
WIBAM (Work in progress) Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data 3D object dete
MBPO (paper: When to trust your model: Model-based policy optimization) in offline RL settings
offline-MBPO This repository contains the code of a version of model-based RL algorithm MBPO, which is modified to perform in offline RL settings Pape
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)
V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt
Ranger - a synergistic optimizer using RAdam (Rectified Adam), Gradient Centralization and LookAhead in one codebase
Ranger-Deep-Learning-Optimizer Ranger - a synergistic optimizer combining RAdam (Rectified Adam) and LookAhead, and now GC (gradient centralization) i
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".
Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go
PyTorch implementation of Constrained Policy Optimization
PyTorch implementation of Constrained Policy Optimization (CPO) This repository has a simple to understand and use implementation of CPO in PyTorch. A
Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format
ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation
ProMP: Proximal Meta-Policy Search
ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m
Progressive Image Deraining Networks: A Better and Simpler Baseline
Progressive Image Deraining Networks: A Better and Simpler Baseline [arxiv] [pdf] [supp] Introduction This paper provides a better and simpler baselin
Baseline of DCASE 2020 task 4
Couple Learning for SED This repository provides the data and source code for sound event detection (SED) task. The improvement of the Couple Learning
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search This repository is the official implementation of CAPITAL: Optimal Subgrou
BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.
BasicRL: easy and fundamental codes for deep reinforcement learning BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up. It is
A game theoretic approach to explain the output of any machine learning model.
SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allo
Simple Python tool that generates a pseudo-random password with numbers, letters, and special characters in accordance with password policy best practices.
Simple Python tool that generates a pseudo-random password with numbers, letters, and special characters in accordance with password policy best practices.
Gradient Step Denoiser for convergent Plug-and-Play
Source code for the paper "Gradient Step Denoiser for convergent Plug-and-Play"
Training vision models with full-batch gradient descent and regularization
Stochastic Training is Not Necessary for Generalization -- Training competitive vision models without stochasticity This repository implements trainin
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)
UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The
Wonk is a tool for combining a set of AWS policy files into smaller compiled policy sets.
Wonk is a tool for combining a set of AWS policy files into smaller compiled policy sets.
Pytorch implementation of convolutional neural network visualization techniques
Convolutional Neural Network Visualizations This repository contains a number of convolutional neural network visualization techniques implemented in
ilpyt: imitation learning library with modular, baseline implementations in Pytorch
ilpyt The imitation learning toolbox (ilpyt) contains modular implementations of common deep imitation learning algorithms in PyTorch, with unified in
Tutorial for surrogate gradient learning in spiking neural networks
SpyTorch A tutorial on surrogate gradient learning in spiking neural networks Version: 0.4 This repository contains tutorial files to get you started
A PyTorch implementation of Learning to learn by gradient descent by gradient descent
Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST
Conditional probing: measuring usable information beyond a baseline
Conditional probing: measuring usable information beyond a baseline
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"
ppo_pytorch_cpp - an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch
PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286
Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https
A PyTorch implementation of Learning to learn by gradient descent by gradient descent
Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST
Implementation of algorithms for continuous control (DDPG and NAF).
DEPRECATION This repository is deprecated and is no longer maintaned. Please see a more recent implementation of RL for continuous control at jax-sac.
A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)
A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)
Demonstration that AWS IAM policy evaluation docs are incorrect
The flowchart from the AWS IAM policy evaluation documentation page, as of 2021-09-12, and dating back to at least 2018-12-27, is the following: The f
PPO is a very popular Reinforcement Learning algorithm at present.
PPO is a very popular Reinforcement Learning algorithm at present. OpenAI takes PPO as the current baseline algorithm. We use the PPO algorithm to train a policy to give the best action in any situation.
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"
Text-AutoAugment (TAA) This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classific
An efficient framework for reinforcement learning.
rl: An efficient framework for reinforcement learning Requirements Introduction PPO Test Requirements name version Python =3.7 numpy =1.19 torch =1
VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)
Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too
Pytorch implementation of Distributed Proximal Policy Optimization
Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https
Pipeline for fast building text classification TF-IDF + LogReg baselines.
Text Classification Baseline Pipeline for fast building text classification TF-IDF + LogReg baselines. Usage Instead of writing custom code for specif
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).
pytorch-a2c-ppo-acktr Update (April 12th, 2021) PPO is great, but Soft Actor Critic can be better for many continuous control tasks. Please check out
FastReID is a research platform that implements state-of-the-art re-identification algorithms.
FastReID is a research platform that implements state-of-the-art re-identification algorithms.
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"
This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short
Set the draft security HTTP header Permissions-Policy (previously Feature-Policy) on your Django app.
django-permissions-policy Set the draft security HTTP header Permissions-Policy (previously Feature-Policy) on your Django app. Requirements Python 3.
Code for technical report "An Improved Baseline for Sentence-level Relation Extraction".
RE_improved_baseline Code for technical report "An Improved Baseline for Sentence-level Relation Extraction". Requirements torch = 1.8.1 transformers
Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"
TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated
Finetuning Pipeline
KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo
KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark.
KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.
Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme
Continuum Learning with GEM: Gradient Episodic Memory
Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory
Pytorch Implementation of paper "Noisy Natural Gradient as Variational Inference"
Noisy Natural Gradient as Variational Inference PyTorch implementation of Noisy Natural Gradient as Variational Inference. Requirements Python 3 Pytor
PyTorch implementation of Trust Region Policy Optimization
PyTorch implementation of TRPO Try my implementation of PPO (aka newer better variant of TRPO), unless you need to you TRPO for some specific reasons.
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps
Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).
Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new
A Strong Baseline for Image Semantic Segmentation
A Strong Baseline for Image Semantic Segmentation Introduction This project is an open source semantic segmentation toolbox based on PyTorch. It is ba
This is the pytorch implementation of the paper - Axiomatic Attribution for Deep Networks.
Integrated Gradients This is the pytorch implementation of "Axiomatic Attribution for Deep Networks". The original tensorflow version could be found h
This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch
This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment to test the algorithm
Bonsai: Gradient Boosted Trees + Bayesian Optimization
Bonsai is a wrapper for the XGBoost and Catboost model training pipelines that leverages Bayesian optimization for computationally efficient hyperparameter tuning.
Official implementation of paper Gradient Matching for Domain Generalization
Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,
a baseline to practice
ccks2021_track3_baseline a baseline to practice 路径可能会有问题,自己改改 torch==1.7.1 pyhton==3.7.1 transformers==4.7.0 cuda==11.0 this is a baseline, you can fi
MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees.
MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees. MooGBT optimizes for multiple objectives by defining constraints on sub-objective(s) along with a primary objective. The constraints are defined as upper bounds on sub-objective loss function. MooGBT uses a Augmented Lagrangian(AL) based constrained optimization framework with Gradient Boosted Trees, to optimize for multiple objectives.
DFM: A Performance Baseline for Deep Feature Matching
DFM: A Performance Baseline for Deep Feature Matching Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baselin
ASVspoof 2021 Baseline Systems
ASVspoof 2021 Baseline Systems Baseline systems are grouped by task: Speech Deepfake (DF) Logical Access (LA) Physical Access (PA) Please find more de
Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).
[PDF] | [Slides] The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk) Installation Inst
A baseline code for VSPW
A baseline code for VSPW Preparation Download VSPW dataset The VSPW dataset with extracted frames and masks is available here.
Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)
GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [paper] [dataset] [API] [do
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"
Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati