149 Repositories
Python red-black-trees Libraries
Ultimate Django3.2 Template for starting any project from not zero!
Ultimate Django3.2 Template for starting any project from not zero!
Making decision trees competitive with neural networks on CIFAR10, CIFAR100, TinyImagenet200, Imagenet
Neural-Backed Decision Trees · Site · Paper · Blog · Video Alvin Wan, *Lisa Dunlap, *Daniel Ho, Jihan Yin, Scott Lee, Henry Jin, Suzanne Petryk, Sarah
Audits Python environments and dependency trees for known vulnerabilities
pip-audit pip-audit is a prototype tool for scanning Python environments for packages with known vulnerabilities. It uses the Python Packaging Advisor
决策树分类与回归模型的实现和可视化
DecisionTree 决策树分类与回归模型,以及可视化 DecisionTree ID3 C4.5 CART 分类 回归 决策树绘制 分类树 回归树 调参 剪枝 ID3 ID3决策树是最朴素的决策树分类器: 无剪枝 只支持离散属性 采用信息增益准则 在data.py中,我们记录了一个小的西瓜数据
Use Fofa、shodan、zoomeye、360quake to collect information(e.g:domain,IP,CMS,OS)同时调用Fofa、shodan、zoomeye、360quake四个网络空间测绘API完成红队信息收集
Cyberspace Map API English/中文 Development fofaAPI Completed zoomeyeAPI shodanAPI regular 360 quakeAPI Completed Difficulty APIs uses different inputs
A tool that detects the expensive Carbon Black watchlists.
A tool that detects the "expensive" Carbon Black watchlists.
A Red Team tool for exfiltrating sensitive data from Jira tickets.
Jir-thief This Module will connect to Jira's API using an access token, export to a word .doc, and download the Jira issues that the target has access
PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation
PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation The paper: https://arxiv.org/abs/1704.03296 What makes
Repository for the IPvSeeYou talk at Black Hat 2021
IPvSeeYou Geolocation Lookup Tool Overview IPvSeeYou.py is a tool to assist with geolocating EUI-64 IPv6 hosts. It takes as input an EUI-64-derived MA
AV Evasion, a Red Team Tool - Fiber, APC, PNG and UUID
AV Evasion, a Red Team Tool - Fiber, APC, PNG and UUID
Bonsai: Gradient Boosted Trees + Bayesian Optimization
Bonsai is a wrapper for the XGBoost and Catboost model training pipelines that leverages Bayesian optimization for computationally efficient hyperparameter tuning.
Black for Python docstrings and reStructuredText (rst).
Style-Doc Style-Doc is Black for Python docstrings and reStructuredText (rst). It can be used to format docstrings (Google docstring format) in Python
MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees.
MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees. MooGBT optimizes for multiple objectives by defining constraints on sub-objective(s) along with a primary objective. The constraints are defined as upper bounds on sub-objective loss function. MooGBT uses a Augmented Lagrangian(AL) based constrained optimization framework with Gradient Boosted Trees, to optimize for multiple objectives.
[CVPR 2021] Pytorch implementation of Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs
Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs In this work, we propose a framework HijackGAN, which enables non-linear latent space travers
BloodCheck enables Red and Blue Teams to manage multiple Neo4j databases and run Cypher queries against a BloodHound dataset.
BloodCheck BloodCheck enables Red and Blue Teams to manage multiple Neo4j databases and run Cypher queries against a BloodHound dataset. Installation
A python library to build Model Trees with Linear Models at the leaves.
A python library to build Model Trees with Linear Models at the leaves.
Bifrost C2. Open-source post-exploitation using Discord API
Bifrost Command and Control What's Bifrost? Bifrost is an open-source Discord BOT that works as Command and Control (C2). This C2 uses Discord API for
30 Days Of Machine Learning Using Pytorch
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams
Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and applications against the adversarial threats of Evasion, Poisoning, Extraction, and Inference. ART supports all popular machine learning frameworks (TensorFlow, Keras, PyTorch, MXNet, scikit-learn, XGBoost, LightGBM, CatBoost, GPy, etc.), all data types (images, tables, audio, video, etc.) and machine learning tasks (classification, object detection, speech recognition, generation, certification, etc.).
Intruder detection systems are common place now, and readily available in industry, but how do they work? They must detect people and large animals, but not generate false alarms in the presence of small animals, changes in lighting, environmental motion such as trees, or melting snow. To work correctly, the system must learn the background, in order to differentiate foreground objects.
Intruder-Detection Intruder detection systems are common place now, and readily available in industry, but how do they work? They must detect people a
Automation for grabbing keys from a Linux host. Useful during red team exercises to quickly help assess what access to a Linux host can lead to.
keygrabber Automation for grabbing keys from a Linux host. This can be helpful during red team exercises when you gain access to a Linux host and want
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models.
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models. The library is a collection of Keras models and supports classification, regression and ranking. TF-DF is a TensorFlow wrapper around the Yggdrasil Decision Forests C++ libraries. Models trained with TF-DF are compatible with Yggdrasil Decision Forests' models, and vice versa.
Code for "Diversity can be Transferred: Output Diversification for White- and Black-box Attacks"
Output Diversified Sampling (ODS) This is the github repository for the NeurIPS 2020 paper "Diversity can be Transferred: Output Diversification for W
Red Team tool for exfiltrating files from a target's Google Drive that you have access to, via Google's API.
GD-Thief Red Team tool for exfiltrating files from a target's Google Drive that you(the attacker) has access to, via the Google Drive API. This includ
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛
transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 安全AI挑战者计划第六期赛道2:ImageNet无限制对抗攻击 介绍 : 深度神经网络已经在各种视觉识别问题上取得了最先进的性能。
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)
A black hole for Internet advertisements
Network-wide ad blocking via your own Linux hardware The Pi-hole® is a DNS sinkhole that protects your devices from unwanted content, without installi
Lightspin AWS IAM Vulnerability Scanner
Red-Shadow Lightspin AWS IAM Vulnerability Scanner Description Scan your AWS IAM Configuration for shadow admins in AWS IAM based on misconfigured den
Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.
gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D
Contrastive Explanation (Foil Trees), developed at TNO/Utrecht University
Contrastive Explanation (Foil Trees) Contrastive and counterfactual explanations for machine learning (ML) Marcel Robeer (2018-2020), TNO/Utrecht Univ
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.
Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.
Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r
It is a forest of random projection trees
rpforest rpforest is a Python library for approximate nearest neighbours search: finding points in a high-dimensional space that are close to a given
Highly interpretable classifiers for scikit learn, producing easily understood decision rules instead of black box models
Highly interpretable, sklearn-compatible classifier based on decision rules This is a scikit-learn compatible wrapper for the Bayesian Rule List class
🍊 :bar_chart: :bulb: Orange: Interactive data analysis
Orange Data Mining Orange is a data mining and visualization toolbox for novice and expert alike. To explore data with Orange, one requires no program
BlackMamba is a multi client C2/post exploitation framework
BlackMamba is a multi client C2/post exploitation framework with some spyware features. Powered by Python 3.8.6 and QT Framework.
Cookiecutter template for FastAPI projects using: Machine Learning, Poetry, Azure Pipelines and Pytests
cookiecutter-fastapi In order to create a template to FastAPI projects. 🚀 Important To use this project you don't need fork it. Just run cookiecutter
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.
Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a
Run `black` on python code blocks in documentation files
blacken-docs Run black on python code blocks in documentation files. install pip install blacken-docs usage blacken-docs provides a single executable
flake8 plugin to run black for checking Python coding style
flake8-black Introduction This is an MIT licensed flake8 plugin for validating Python code style with the command line code formatting tool black. It
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a
Python interface for converting Penn Treebank trees to Stanford Dependencies and Universal Depenencies
PyStanfordDependencies Python interface for converting Penn Treebank trees to Universal Dependencies and Stanford Dependencies. Example usage Start by
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.
Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree
Simple machine learning library / 簡單易用的機器學習套件
FukuML Simple machine learning library / 簡單易用的機器學習套件 Installation $ pip install FukuML Tutorial Lesson 1: Perceptron Binary Classification Learning Al
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.
Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r
Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree
This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic