283 Repositories
Python sparse-reconstruction Libraries
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio
Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)
Table of Content Introduction Getting Started Datasets Installation Experiments Training & Testing Pretrained models Texture fine-tuning Demo Toward R
Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and Layer Input Masking"
model_based_energy_constrained_compression Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and
Learning Sparse Neural Networks through L0 regularization
Example implementation of the L0 regularization method described at Learning Sparse Neural Networks through L0 regularization, Christos Louizos, Max W
Hierarchical unsupervised and semi-supervised topic models for sparse count data with CorEx
Anchored CorEx: Hierarchical Topic Modeling with Minimal Domain Knowledge Correlation Explanation (CorEx) is a topic model that yields rich topics tha
Efficient Sparse Attacks on Videos using Reinforcement Learning
EARL This repository provides a simple implementation of the work "Efficient Sparse Attacks on Videos using Reinforcement Learning" Example: Demo: Her
This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction".
TreePartNet This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction". Depende
patchmatch和patchmatchstereo算法的python实现
patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算
git-partial-submodule is a command-line script for setting up and working with submodules while enabling them to use git's partial clone and sparse checkout features.
Partial Submodules for Git git-partial-submodule is a command-line script for setting up and working with submodules while enabling them to use git's
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views
Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer
HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape
Multi-view 3D reconstruction using neural rendering. Unofficial implementation of UNISURF, VolSDF, NeuS and more.
Multi-view 3D reconstruction using neural rendering. Unofficial implementation of UNISURF, VolSDF, NeuS and more.
[ICCV 2021 Oral] NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo
NerfingMVS Project Page | Paper | Video | Data NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo Yi Wei, Shaohui
🌈 PyTorch Implementation for EMNLP'21 Findings "Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer"
SGLKT-VisDial Pytorch Implementation for the paper: Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer Gi-Cheon Kang, Junseok P
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals, CVPR2021
End-to-End Object Detection with Learnable Proposal, CVPR2021
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.
(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks
Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks
Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.
(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac
[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction
SADRNet Paper link: SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction Requirements python
Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"
Demysitifing Local Vision Transformer, arxiv This is the official PyTorch implementation of our paper. We simply replace local self attention by (dyna
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture
MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration
Towards uncontrained hand-object reconstruction from RGB videos
Towards uncontrained hand-object reconstruction from RGB videos Yana Hasson, Gül Varol, Ivan Laptev and Cordelia Schmid Project page Paper Table of Co
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)
Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha
We evaluate our method on different datasets (including ShapeNet, CUB-200-2011, and Pascal3D+) and achieve state-of-the-art results, outperforming all the other supervised and unsupervised methods and 3D representations, all in terms of performance, accuracy, and training time.
An Effective Loss Function for Generating 3D Models from Single 2D Image without Rendering Papers with code | Paper Nikola Zubić Pietro Lio University
This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction
H3DS Dataset This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction Access
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch
Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab
Image reconstruction done with untrained neural networks.
PyTorch Deep Image Prior An implementation of image reconstruction methods from Deep Image Prior (Ulyanov et al., 2017) in PyTorch. The point of the p
Neural implicit reconstruction experiments for the Vector Neuron paper
Neural Implicit Reconstruction with Vector Neurons This repository contains code for the neural implicit reconstruction experiments in the paper Vecto
Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimization"
Riggable 3D Face Reconstruction via In-Network Optimization Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimizati
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici
PyTorch implementation of CloudWalk's recent work DenseBody
densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update
[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation
MonoRUn MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. CVPR 2021. [paper] Hansheng Chen, Yuyao Huang, Wei Tian*
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.
ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).
Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-
Fast sparse deep learning on CPUs
SPARSEDNN **If you want to use this repo, please send me an email: [email protected], or raise a Github issue. ** Fast sparse deep learning on CPUs
[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang
Chasing Sparsity in Vision Transformers: An End-to-End Exploration Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Explora
Square Root Bundle Adjustment for Large-Scale Reconstruction
RootBA: Square Root Bundle Adjustment Project Page | Paper | Poster | Video | Code Table of Contents Citation Dependencies Installing dependencies on
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.
Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization
Model-based 3D Hand Reconstruction via Self-Supervised Learning, CVPR2021
S2HAND: Model-based 3D Hand Reconstruction via Self-Supervised Learning S2HAND presents a self-supervised 3D hand reconstruction network that can join
This is the official repository for evaluation on the NoW Benchmark Dataset. The goal of the NoW benchmark is to introduce a standard evaluation metric to measure the accuracy and robustness of 3D face reconstruction methods from a single image under variations in viewing angle, lighting, and common occlusions.
NoW Evaluation This is the official repository for evaluation on the NoW Benchmark Dataset. The goal of the NoW benchmark is to introduce a standard e
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.
LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;
Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes
Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.
Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera
Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)
SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in
PyTorch implementation of: Michieli U. and Zanuttigh P., "Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations", CVPR 2021.
Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations This is the official PyTorch implementation
Research code for CVPR 2021 paper "End-to-End Human Pose and Mesh Reconstruction with Transformers"
MeshTransformer ✨ This is our research code of End-to-End Human Pose and Mesh Reconstruction with Transformers. MEsh TRansfOrmer is a simple yet effec
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult
[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints
Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon
Improving Deep Network Debuggability via Sparse Decision Layers
Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D
Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations
The Boombox: Visual Reconstruction from Acoustic Vibrations Boyuan Chen, Mia Chiquier, Hod Lipson, Carl Vondrick Columbia University Project Website |
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"
StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model
Block Sparse movement pruning
Movement Pruning: Adaptive Sparsity by Fine-Tuning Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; ho
A large-scale dataset of both raw MRI measurements and clinical MRI images
fastMRI is a collaborative research project from Facebook AI Research (FAIR) and NYU Langone Health to investigate the use of AI to make MRI scans faster. NYU Langone Health has released fully anonymized knee and brain MRI datasets that can be downloaded from the fastMRI dataset page. Publications associated with the fastMRI project can be found at the end of this README.
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction
PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan
Bayesian Image Reconstruction using Deep Generative Models
Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F
Sandbox for training deep learning networks
Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (
Submanifold sparse convolutional networks
Submanifold Sparse Convolutional Networks This is the PyTorch library for training Submanifold Sparse Convolutional Networks. Spatial sparsity This li
Implementation for the "Surface Reconstruction from 3D Line Segments" paper.
Surface Reconstruction from 3D Line Segments Surface reconstruction from 3d line segments. Langlois, P. A., Boulch, A., & Marlet, R. In 2019 Internati
CondenseNet V2: Sparse Feature Reactivation for Deep Networks
CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y
Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations
Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yu
QueryDet: Cascaded Sparse Query for Accelerating High-Resolution SmallObject Detection
QueryDet-PyTorch This repository is the official implementation of our paper: QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small O
Newt - a Gaussian process library in JAX.
Newt __ \/_ (' \`\ _\, \ \\/ /`\/\ \\ \ \\
Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction
RfD-Net [Project Page] [Paper] [Video] RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction Yinyu Nie, Ji Hou, Xiaoguang Han, Matthi
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.
CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec
monolish: MONOlithic Liner equation Solvers for Highly-parallel architecture
monolish is a linear equation solver library that monolithically fuses variable data type, matrix structures, matrix data format, vendor specific data transfer APIs, and vendor specific numerical algebra libraries.
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral
NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon
Code for "3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop"
PyMAF This repository contains the code for the following paper: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop Hongwe
Poisson Surface Reconstruction for LiDAR Odometry and Mapping
Poisson Surface Reconstruction for LiDAR Odometry and Mapping Surfels TSDF Our Approach Table: Qualitative comparison between the different mapping te
Fast solver for L1-type problems: Lasso, sparse Logisitic regression, Group Lasso, weighted Lasso, Multitask Lasso, etc.
celer Fast algorithm to solve Lasso-like problems with dual extrapolation. Currently, the package handles the following problems: Lasso weighted Lasso
PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations
PyTorch Sparse This package consists of a small extension library of optimized sparse matrix operations with autograd support. This package currently
Library for faster pinned CPU - GPU transfer in Pytorch
SpeedTorch Faster pinned CPU tensor - GPU Pytorch variabe transfer and GPU tensor - GPU Pytorch variable transfer, in certain cases. Update 9-29-1
Deep Implicit Moving Least-Squares Functions for 3D Reconstruction
DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction This repository contains the implementation of the paper: Deep Implicit Mo
git《Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction》(ECCV 2020) GitHub:
Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction Code for the ECCV 2020 paper by Yiming Qian and Yasutaka Furukawa Getting
3D medical imaging reconstruction software
InVesalius InVesalius generates 3D medical imaging reconstructions based on a sequence of 2D DICOM files acquired with CT or MRI equipments. InVesaliu
3D Reconstruction Software
Meshroom is a free, open-source 3D Reconstruction Software based on the AliceVision Photogrammetric Computer Vision framework. Learn more details abou
Sparse Beta-Divergence Tensor Factorization Library
NTFLib Sparse Beta-Divergence Tensor Factorization Library Based off of this beta-NTF project this library is specially-built to handle tensors where
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.
Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt
CPU inference engine that delivers unprecedented performance for sparse models
The DeepSparse Engine is a CPU runtime that delivers unprecedented performance by taking advantage of natural sparsity within neural networks to reduce compute required as well as accelerate memory bound workloads. It is focused on model deployment and scaling machine learning pipelines, fitting seamlessly into your existing deployments as an inference backend.
AIST++ API This repo contains starter code for using the AIST++ dataset.
AIST++ API This repo contains starter code for using the AIST++ dataset. To download the dataset or explore details of this dataset, please go to our
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.
Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable
An open source machine learning library for performing regression tasks using RVM technique.
Introduction neonrvm is an open source machine learning library for performing regression tasks using RVM technique. It is written in C programming la