3243 Repositories
Python stock-data-analysis Libraries
ISI's Optical Character Recognition (OCR) software for machine-print and handwriting data
VistaOCR ISI's Optical Character Recognition (OCR) software for machine-print and handwriting data Publications "How to Efficiently Increase Resolutio
Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)
English | 简体中文 Introduction PaddleOCR aims to create multilingual, awesome, leading, and practical OCR tools that help users train better models and a
This repository provides train&test code, dataset, det.&rec. annotation, evaluation script, annotation tool, and ranking.
SCUT-CTW1500 Datasets We have updated annotations for both train and test set. Train: 1000 images [images][annos] Additional point annotation for each
Text language identification using Wikipedia data
Text language identification using Wikipedia data The aim of this project is to provide high-quality language detection over all the web's languages.
Python library to extract tabular data from images and scanned PDFs
Overview ExtractTable - API to extract tabular data from images and scanned PDFs The motivation is to make it easy for developers to extract tabular d
Turn images of tables into CSV data. Detect tables from images and run OCR on the cells.
Table of Contents Overview Requirements Demo Modules Overview This python package contains modules to help with finding and extracting tabular data fr
Unofficial implementation of "TableNet: Deep Learning model for end-to-end Table detection and Tabular data extraction from Scanned Document Images"
TableNet Unofficial implementation of ICDAR 2019 paper : TableNet: Deep Learning model for end-to-end Table detection and Tabular data extraction from
Handwritten_Text_Recognition
Deep Learning framework for Line-level Handwritten Text Recognition Short presentation of our project Introduction Installation 2.a Install conda envi
Document Layout Analysis
Eynollah Document Layout Analysis Introduction This tool performs document layout analysis (segmentation) from image data and returns the results as P
a deep learning model for page layout analysis / segmentation.
OCR Segmentation a deep learning model for page layout analysis / segmentation. dependencies tensorflow1.8 python3 dataset: uw3-framed-lines-degraded-
Layout Analysis Evaluator for the ICDAR 2017 competition on Layout Analysis for Challenging Medieval Manuscripts
LayoutAnalysisEvaluator Layout Analysis Evaluator for: ICDAR 2019 Historical Document Reading Challenge on Large Structured Chinese Family Records ICD
ocroseg - This is a deep learning model for page layout analysis / segmentation.
ocroseg This is a deep learning model for page layout analysis / segmentation. There are many different ways in which you can train and run it, but by
Page to PAGE Layout Analysis Tool
P2PaLA Page to PAGE Layout Analysis (P2PaLA) is a toolkit for Document Layout Analysis based on Neural Networks. 💥 Try our new DEMO for online baseli
A simple document layout analysis using Python-OpenCV
Run the application: python main.py *Note: For first time running the application, create a folder named "output". The application is a simple documen
Document Layout Analysis Projects
Layout_Analysis Introduction This is an implementation of RLSA and X-Y Cut with OpenCV Dependencies OpenCV 3.0+ How to use Compile with g++ : g++ -std
Generic framework for historical document processing
dhSegment dhSegment is a tool for Historical Document Processing. Its generic approach allows to segment regions and extract content from different ty
Deep learning based page layout analysis
Deep Learning Based Page Layout Analyze This is a Python implementaion of page layout analyze tool. The goal of page layout analyze is to segment page
A semi-automatic open-source tool for Layout Analysis and Region EXtraction on early printed books.
LAREX LAREX is a semi-automatic open-source tool for layout analysis on early printed books. It uses a rule based connected components approach which
DECAF: Deep Extreme Classification with Label Features
DECAF DECAF: Deep Extreme Classification with Label Features @InProceedings{Mittal21, author = "Mittal, A. and Dahiya, K. and Agrawal, S. and Sain
Pack up to 3MB of data into a tweetable PNG polyglot file.
tweetable-polyglot-png Pack up to 3MB of data into a tweetable PNG polyglot file. See it in action here: https://twitter.com/David3141593/status/13719
Implementation of Kalman Filter in Python
Kalman Filter in Python This is a basic example of how Kalman filter works in Python. I do plan on refactoring and expanding this repo in the future.
Negative sampling for solving the unlabeled entity problem in NER. ICLR-2021 paper: Empirical Analysis of Unlabeled Entity Problem in Named Entity Recognition.
Negative Sampling for NER Unlabeled entity problem is prevalent in many NER scenarios (e.g., weakly supervised NER). Our paper in ICLR-2021 proposes u
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)
Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train
PyTorch implementations of the paper: "Learning Independent Instance Maps for Crowd Localization"
IIM - Crowd Localization This repo is the official implementation of paper: Learning Independent Instance Maps for Crowd Localization. The code is dev
Unofficial implementation of "TTNet: Real-time temporal and spatial video analysis of table tennis" (CVPR 2020)
TTNet-Pytorch The implementation for the paper "TTNet: Real-time temporal and spatial video analysis of table tennis" An introduction of the project c
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.
Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations
Visualize Data From Stray Scanner https://keke.dev/blog/2021/03/10/Stray-Scanner.html
StrayVisualizer A set of scripts to work with data collected using Stray Scanner. Usage Installing Dependencies Install dependencies with pip -r requi
First Party data integration solution built for marketing teams to enable audience and conversion onboarding into Google Marketing products (Google Ads, Campaign Manager, Google Analytics).
Megalista Sample integration code for onboarding offline/CRM data from BigQuery as custom audiences or offline conversions in Google Ads, Google Analy
TorchMetrics is a collection of 25+ PyTorch metrics implementations and an easy-to-use API to create custom metrics.
Machine learning metrics for distributed, scalable PyTorch applications.
SpiderFoot automates OSINT collection so that you can focus on analysis.
SpiderFoot is an open source intelligence (OSINT) automation tool. It integrates with just about every data source available and utilises a range of m
Cowrie SSH/Telnet Honeypot https://cowrie.readthedocs.io
Cowrie Welcome to the Cowrie GitHub repository This is the official repository for the Cowrie SSH and Telnet Honeypot effort. What is Cowrie Cowrie is
Ralph is the CMDB / Asset Management system for data center and back office hardware.
Ralph Ralph is full-featured Asset Management, DCIM and CMDB system for data centers and back offices. Features: keep track of assets purchases and th
IP address management (IPAM) and data center infrastructure management (DCIM) tool.
NetBox is an IP address management (IPAM) and data center infrastructure management (DCIM) tool. Initially conceived by the network engineering team a
Ajenti Core and stock plugins
Ajenti is a Linux & BSD modular server admin panel. Ajenti 2 provides a new interface and a better architecture, developed with Python3 and AngularJS.
a full featured file system for online data storage
S3QL S3QL is a file system that stores all its data online using storage services like Google Storage, Amazon S3, or OpenStack. S3QL effectively provi
An open source multi-tool for exploring and publishing data
Datasette An open source multi-tool for exploring and publishing data Datasette is a tool for exploring and publishing data. It helps people take data
🦉Data Version Control | Git for Data & Models
Website • Docs • Blog • Twitter • Chat (Community & Support) • Tutorial • Mailing List Data Version Control or DVC is an open-source tool for data sci
Python library to make development of portfolio analysis faster and easier
Trafalgar Python library to make development of portfolio analysis faster and easier Installation 🔥 For the moment, Trafalgar is still in beta develo
Finds Jobs on LinkedIn using web-scraping
Find Jobs on LinkedIn 📔 This program finds jobs by scraping on LinkedIn 👨💻 Relies on User Input. Accepts: Country, City, State 📑 Data about jobs
Sentello is python script that simulates the anti-evasion and anti-analysis techniques used by malware.
sentello Sentello is a python script that simulates the anti-evasion and anti-analysis techniques used by malware. For techniques that are difficult t
Consistency Regularization for Adversarial Robustness
Consistency Regularization for Adversarial Robustness Official PyTorch implementation of Consistency Regularization for Adversarial Robustness by Jiho
All the essential resources and template code needed to understand and practice data structures and algorithms in python with few small projects to demonstrate their practical application.
Data Structures and Algorithms Python INDEX 1. Resources - Books Data Structures - Reema Thareja competitiveCoding Big-O Cheat Sheet DAA Syllabus Inte
Synthetic data for the people.
zpy: Synthetic data in Blender. Website • Install • Docs • Examples • CLI • Contribute • Licence Abstract Collecting, labeling, and cleaning data for
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.
Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain
Django project starter on steroids: quickly create a Django app AND generate source code for data models + REST/GraphQL APIs (the generated code is auto-linted and has 100% test coverage).
Create Django App 💛 We're a Django project starter on steroids! One-line command to create a Django app with all the dependencies auto-installed AND
(CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic
ClassSR (CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic Paper Authors: Xiangtao Kong, Hengyuan
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!
Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r
Code associated with the "Data Augmentation using Pre-trained Transformer Models" paper
Data Augmentation using Pre-trained Transformer Models Code associated with the Data Augmentation using Pre-trained Transformer Models paper Code cont
Performance analysis of predictive (alpha) stock factors
Alphalens Alphalens is a Python Library for performance analysis of predictive (alpha) stock factors. Alphalens works great with the Zipline open sour
Multiple Pairwise Comparisons (Post Hoc) Tests in Python
scikit-posthocs is a Python package that provides post hoc tests for pairwise multiple comparisons that are usually performed in statistical data anal
Supply a wrapper ``StockDataFrame`` based on the ``pandas.DataFrame`` with inline stock statistics/indicators support.
Stock Statistics/Indicators Calculation Helper VERSION: 0.3.2 Introduction Supply a wrapper StockDataFrame based on the pandas.DataFrame with inline s
Create HTML profiling reports from pandas DataFrame objects
Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great
An extension to pandas dataframes describe function.
pandas_summary An extension to pandas dataframes describe function. The module contains DataFrameSummary object that extend describe() with: propertie
Python audio and music signal processing library
madmom Madmom is an audio signal processing library written in Python with a strong focus on music information retrieval (MIR) tasks. The library is i
A library for augmenting annotated audio data
muda A library for Musical Data Augmentation. muda package implements annotation-aware musical data augmentation, as described in the muda paper. The
Marsyas - Music Analysis, Retrieval and Synthesis for Audio Signals
Welcome to MARSYAS. MARSYAS is a software framework for rapid prototyping of audio applications, with flexibility and extensibility as primary concer
C++ library for audio and music analysis, description and synthesis, including Python bindings
Essentia Essentia is an open-source C++ library for audio analysis and audio-based music information retrieval released under the Affero GPL license.
a library for audio and music analysis
aubio aubio is a library to label music and sounds. It listens to audio signals and attempts to detect events. For instance, when a drum is hit, at wh
POT : Python Optimal Transport
POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa
The Python ensemble sampling toolkit for affine-invariant MCMC
emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense
Supervised domain-agnostic prediction framework for probabilistic modelling
A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data
A fork of OpenAI Baselines, implementations of reinforcement learning algorithms
Stable Baselines Stable Baselines is a set of improved implementations of reinforcement learning algorithms based on OpenAI Baselines. You can read a
A scikit-learn-compatible Python implementation of ReBATE, a suite of Relief-based feature selection algorithms for Machine Learning.
Master status: Development status: Package information: scikit-rebate This package includes a scikit-learn-compatible Python implementation of ReBATE,
A fast xgboost feature selection algorithm
BoostARoota A Fast XGBoost Feature Selection Algorithm (plus other sklearn tree-based classifiers) Why Create Another Algorithm? Automated processes l
Automatic extraction of relevant features from time series:
tsfresh This repository contains the TSFRESH python package. The abbreviation stands for "Time Series Feature extraction based on scalable hypothesis
An open source python library for automated feature engineering
"One of the holy grails of machine learning is to automate more and more of the feature engineering process." ― Pedro Domingos, A Few Useful Things to
Directions overlay for working with pandas in an analysis environment
dovpanda Directions OVer PANDAs Directions are hints and tips for using pandas in an analysis environment. dovpanda is an overlay companion for workin
Build, test, deploy, iterate - Dev and prod tool for data science pipelines
Prodmodel is a build system for data science pipelines. Users, testers, contributors are welcome! Motivation · Concepts · Installation · Usage · Contr
A Python toolkit for processing tabular data
meza: A Python toolkit for processing tabular data Index Introduction | Requirements | Motivation | Hello World | Usage | Interoperability | Installat
Clean APIs for data cleaning. Python implementation of R package Janitor
pyjanitor pyjanitor is a Python implementation of the R package janitor, and provides a clean API for cleaning data. Why janitor? Originally a port of
BatchFlow helps you conveniently work with random or sequential batches of your data and define data processing and machine learning workflows even for datasets that do not fit into memory.
BatchFlow BatchFlow helps you conveniently work with random or sequential batches of your data and define data processing and machine learning workflo
functional data manipulation for pandas
pandas-ply: functional data manipulation for pandas pandas-ply is a thin layer which makes it easier to manipulate data with pandas. In particular, it
Easy pipelines for pandas DataFrames.
pdpipe ˨ Easy pipelines for pandas DataFrames (learn how!). Website: https://pdpipe.github.io/pdpipe/ Documentation: https://pdpipe.github.io/pdpipe/d
Out-of-Core DataFrames for Python, ML, visualize and explore big tabular data at a billion rows per second 🚀
What is Vaex? Vaex is a high performance Python library for lazy Out-of-Core DataFrames (similar to Pandas), to visualize and explore big tabular data
Koalas: pandas API on Apache Spark
pandas API on Apache Spark Explore Koalas docs » Live notebook · Issues · Mailing list Help Thirsty Koalas Devastated by Recent Fires The Koalas proje
A Python package for manipulating 2-dimensional tabular data structures
datatable This is a Python package for manipulating 2-dimensional tabular data structures (aka data frames). It is close in spirit to pandas or SFrame
High performance datastore for time series and tick data
Arctic TimeSeries and Tick store Arctic is a high performance datastore for numeric data. It supports Pandas, numpy arrays and pickled objects out-of-
A pure Python implementation of Apache Spark's RDD and DStream interfaces.
pysparkling Pysparkling provides a faster, more responsive way to develop programs for PySpark. It enables code intended for Spark applications to exe
Universal 1d/2d data containers with Transformers functionality for data analysis.
XPandas (extended Pandas) implements 1D and 2D data containers for storing type-heterogeneous tabular data of any type, and encapsulates feature extra
Pandas Google BigQuery
pandas-gbq pandas-gbq is a package providing an interface to the Google BigQuery API from pandas Installation Install latest release version via conda
NumPy and Pandas interface to Big Data
Blaze translates a subset of modified NumPy and Pandas-like syntax to databases and other computing systems. Blaze allows Python users a familiar inte
Create HTML profiling reports from pandas DataFrame objects
Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great
Logging MXNet data for visualization in TensorBoard.
Logging MXNet Data for Visualization in TensorBoard Overview MXBoard provides a set of APIs for logging MXNet data for visualization in TensorBoard. T
Interpretability and explainability of data and machine learning models
AI Explainability 360 (v0.2.1) The AI Explainability 360 toolkit is an open-source library that supports interpretability and explainability of datase
Model analysis tools for TensorFlow
TensorFlow Model Analysis TensorFlow Model Analysis (TFMA) is a library for evaluating TensorFlow models. It allows users to evaluate their models on
A library for debugging/inspecting machine learning classifiers and explaining their predictions
ELI5 ELI5 is a Python package which helps to debug machine learning classifiers and explain their predictions. It provides support for the following m
An intuitive library to add plotting functionality to scikit-learn objects.
Welcome to Scikit-plot Single line functions for detailed visualizations The quickest and easiest way to go from analysis... ...to this. Scikit-plot i
Visual analysis and diagnostic tools to facilitate machine learning model selection.
Yellowbrick Visual analysis and diagnostic tools to facilitate machine learning model selection. What is Yellowbrick? Yellowbrick is a suite of visual
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.
Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The
With Holoviews, your data visualizes itself.
HoloViews Stop plotting your data - annotate your data and let it visualize itself. HoloViews is an open-source Python library designed to make data a
How on earth can I ever think of a solution like that in an interview?!
fuck-coding-interviews This repository is created by an awkward programmer who always struggles with coding problems on LeetCode, even with some Easy
Algorithms and data structures for educational, demonstrational and experimental purposes.
Algorithms and Data Structures (ands) Introduction This project was created for personal use mostly while studying for an exam (starting in the month
:computer: Data Structures and Algorithms in Python
Algorithms in Python Implementations of a few algorithms and datastructures for fun and profit! Completed Karatsuba Multiplication Basic Sorting Rabin
Python library that makes it easy for data scientists to create charts.
Chartify Chartify is a Python library that makes it easy for data scientists to create charts. Why use Chartify? Consistent input data format: Spend l
Keras community contributions
keras-contrib : Keras community contributions Keras-contrib is deprecated. Use TensorFlow Addons. The future of Keras-contrib: We're migrating to tens
Machine Learning Platform for Kubernetes
Reproduce, Automate, Scale your data science. Welcome to Polyaxon, a platform for building, training, and monitoring large scale deep learning applica
A simplified framework and utilities for PyTorch
Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne
Data loaders and abstractions for text and NLP
torchtext This repository consists of: torchtext.datasets: The raw text iterators for common NLP datasets torchtext.data: Some basic NLP building bloc
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.
Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a