2187 Repositories
Python video-prediction-models Libraries
Few-Shot Graph Learning for Molecular Property Prediction
Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)
OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa
A simple way to train and use PyTorch models with multi-GPU, TPU, mixed-precision
🤗 Accelerate was created for PyTorch users who like to write the training loop of PyTorch models but are reluctant to write and maintain the boilerplate code needed to use multi-GPUs/TPU/fp16.
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks [Paper] [Project Website] This repository holds the source code, pretra
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models
Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment
VideoGPT: Video Generation using VQ-VAE and Transformers
VideoGPT: Video Generation using VQ-VAE and Transformers [Paper][Website][Colab][Gradio Demo] We present VideoGPT: a conceptually simple architecture
This repository contains the code for "Generating Datasets with Pretrained Language Models".
Datasets from Instructions (DINO 🦕 ) This repository contains the code for Generating Datasets with Pretrained Language Models. The paper introduces
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet
It is a simple python package to play videos in the terminal using characters as pixels
It is a simple python package to play videos in the terminal using characters as pixels
Bayesian Image Reconstruction using Deep Generative Models
Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F
This repository allows you to anonymize sensitive information in images/videos. The solution is fully compatible with the DL-based training/inference solutions that we already published/will publish for Object Detection and Semantic Segmentation.
BMW-Anonymization-Api Data privacy and individuals’ anonymity are and always have been a major concern for data-driven companies. Therefore, we design
Diffgram - Supervised Learning Data Platform
Data Annotation, Data Labeling, Annotation Tooling, Training Data for Machine Learning
The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"
TimeSformer This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provid
MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images
Main repo for ECCV 2020 paper MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images. visual.cs.brown.edu/matryodshka
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark
Introduction English | 简体中文 MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. The m
OpenMMLab Image and Video Editing Toolbox
Introduction MMEditing is an open source image and video editing toolbox based on PyTorch. It is a part of the OpenMMLab project. The master branch wo
An end-to-end PyTorch framework for image and video classification
What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R
Pretrained Pytorch face detection (MTCNN) and recognition (InceptionResnet) models
Face Recognition Using Pytorch Python 3.7 3.6 3.5 Status This is a repository for Inception Resnet (V1) models in pytorch, pretrained on VGGFace2 and
Sandbox for training deep learning networks
Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (
Fine-tune pretrained Convolutional Neural Networks with PyTorch
Fine-tune pretrained Convolutional Neural Networks with PyTorch. Features Gives access to the most popular CNN architectures pretrained on ImageNet. A
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)
Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki
A Pythonic introduction to methods for scaling your data science and machine learning work to larger datasets and larger models, using the tools and APIs you know and love from the PyData stack (such as numpy, pandas, and scikit-learn).
This tutorial's purpose is to introduce Pythonistas to methods for scaling their data science and machine learning work to larger datasets and larger models, using the tools and APIs they know and love from the PyData stack (such as numpy, pandas, and scikit-learn).
Python library containing BART query generation and BERT-based Siamese models for neural retrieval.
Neural Retrieval Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as
QA-GNN: Question Answering using Language Models and Knowledge Graphs
QA-GNN: Question Answering using Language Models and Knowledge Graphs This repo provides the source code & data of our paper: QA-GNN: Reasoning with L
Try out deep learning models online on Google Colab
Try out deep learning models online on Google Colab
Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance
Models for natural language understanding (NLU) tasks often rely on the idiosyncratic biases of the dataset, which make them brittle against test cases outside the training distribution.
PyTorchVideo is a deeplearning library with a focus on video understanding work
PyTorchVideo is a deeplearning library with a focus on video understanding work. PytorchVideo provides resusable, modular and efficient components needed to accelerate the video understanding research. PyTorchVideo is developed using PyTorch and supports different deeplearning video components like video models, video datasets, and video-specific transforms.
3D ResNet Video Classification accelerated by TensorRT
Activity Recognition TensorRT Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT P.S Click on
Newt - a Gaussian process library in JAX.
Newt __ \/_ (' \`\ _\, \ \\/ /`\/\ \\ \ \\
Russian GPT3 models.
Russian GPT-3 models (ruGPT3XL, ruGPT3Large, ruGPT3Medium, ruGPT3Small) trained with 2048 sequence length with sparse and dense attention blocks. We also provide Russian GPT-2 large model (ruGPT2Large) trained with 1024 sequence length.
:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling
bulbea "Deep Learning based Python Library for Stock Market Prediction and Modelling." Table of Contents Installation Usage Documentation Dependencies
Use deep learning, genetic programming and other methods to predict stock and market movements
StockPredictions Use classic tricks, neural networks, deep learning, genetic programming and other methods to predict stock and market movements. Both
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network
Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:
Introducing neural networks to predict stock prices
IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o
Use unsupervised and supervised learning to predict stocks
AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n
Using python and scikit-learn to make stock predictions
MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni
FireDM is a python open source (Internet Download Manager) with multi-connections, high speed engine, it downloads general files and videos from youtube and tons of other streaming websites .
python open source (Internet Download Manager) with multi-connections, high speed engine, based on python, LibCurl, and youtube_dl https://github.com/firedm/FireDM
Platform for building statistical models of cities and regions
UrbanSim UrbanSim is a platform for building statistical models of cities and regions. These models help forecast long-range patterns in real estate d
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"
Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape
Bulk Downloader for Reddit
saveddit is a bulk media downloader for reddit pip3 install saveddit Setting up authorization Register an application with Reddit Write down your clie
Implementation of ViViT: A Video Vision Transformer
ViViT: A Video Vision Transformer Unofficial implementation of ViViT: A Video Vision Transformer. Notes: This is in WIP. Model 2 is implemented, Model
《K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters》(2020)
K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters This repository is the implementation of the paper "K-Adapter: Infusing Knowledge
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.
InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea
Set of models for classifcation of 3D volumes
Classification models 3D Zoo - Keras and TF.Keras This repository contains 3D variants of popular CNN models for classification like ResNets, DenseNet
Code for pre-training CharacterBERT models (as well as BERT models).
Pre-training CharacterBERT (and BERT) This is a repository for pre-training BERT and CharacterBERT. DISCLAIMER: The code was largely adapted from an o
[AAAI 2021] MVFNet: Multi-View Fusion Network for Efficient Video Recognition
MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)
Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1
A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models
wav2vec-toolkit A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models This repository accompanies the
Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"
Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.
PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting
InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)
Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"
How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod
(ImageNet pretrained models) The official pytorch implemention of the TPAMI paper "Res2Net: A New Multi-scale Backbone Architecture"
Res2Net The official pytorch implemention of the paper "Res2Net: A New Multi-scale Backbone Architecture" Our paper is accepted by IEEE Transactions o
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral
NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon
Top2Vec is an algorithm for topic modeling and semantic search.
Top2Vec is an algorithm for topic modeling and semantic search. It automatically detects topics present in text and generates jointly embedded topic, document and word vectors.
SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch
SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It is easy to implement your own image or video deblurring or other restoration algorithms.
Neural models of common sense. 🤖
Unicorn on Rainbow Neural models of common sense. This repository is for the paper: Unicorn on Rainbow: A Universal Commonsense Reasoning Model on a N
This project is part of Eleuther AI's quest to create a massive repository of high quality text data for training language models.
This project is part of Eleuther AI's quest to create a massive repository of high quality text data for training language models.
Official implementation of "An Image is Worth 16x16 Words, What is a Video Worth?" (2021 paper)
An Image is Worth 16x16 Words, What is a Video Worth? paper Official PyTorch Implementation Gilad Sharir, Asaf Noy, Lihi Zelnik-Manor DAMO Academy, Al
A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''.
P-tuning A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''. How to use our code We have released the code
Command-line program to download videos from YouTube.com and other video sites
youtube-dl - download videos from youtube.com or other video platforms
git《Joint Entity and Relation Extraction with Set Prediction Networks》(2020) GitHub:
Joint Entity and Relation Extraction with Set Prediction Networks Source code for Joint Entity and Relation Extraction with Set Prediction Networks. W
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification
STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in
Viewflow is an Airflow-based framework that allows data scientists to create data models without writing Airflow code.
Viewflow Viewflow is a framework built on the top of Airflow that enables data scientists to create materialized views. It allows data scientists to f
A Telegram Video Watermark Adder Bot in Pyrogram by @AbirHasan2005
Watermark-Bot A Telegram Video Watermark Adder Bot by @AbirHasan2005 Features: Save Custom Watermark Image. Auto Resize Watermark According to Video q
Hybrid Neural Fusion for Full-frame Video Stabilization
FuSta: Hybrid Neural Fusion for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo
This code extends the neural style transfer image processing technique to video by generating smooth transitions between several reference style images
Neural Style Transfer Transition Video Processing By Brycen Westgarth and Tristan Jogminas Description This code extends the neural style transfer ima
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction
Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,
Automated Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning
The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. I
Streamlink is a CLI utility which pipes video streams from various services into a video player
Streamlink is a CLI utility which pipes video streams from various services into a video player
A probabilistic programming library for Bayesian deep learning, generative models, based on Tensorflow
ZhuSuan is a Python probabilistic programming library for Bayesian deep learning, which conjoins the complimentary advantages of Bayesian methods and
A probabilistic programming language in TensorFlow. Deep generative models, variational inference.
Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilis
Describing statistical models in Python using symbolic formulas
Patsy is a Python library for describing statistical models (especially linear models, or models that have a linear component) and building design mat
A Python package for Bayesian forecasting with object-oriented design and probabilistic models under the hood.
Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.
pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit
Fast, flexible and easy to use probabilistic modelling in Python.
Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic
Hidden Markov Models in Python, with scikit-learn like API
hmmlearn hmmlearn is a set of algorithms for unsupervised learning and inference of Hidden Markov Models. For supervised learning learning of HMMs and
A scikit-learn based module for multi-label et. al. classification
scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth
Scikit-learn compatible estimation of general graphical models
skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships
A Python library for dynamic classifier and ensemble selection
DESlib DESlib is an easy-to-use ensemble learning library focused on the implementation of the state-of-the-art techniques for dynamic classifier and
Differentiable SDE solvers with GPU support and efficient sensitivity analysis.
PyTorch Implementation of Differentiable SDE Solvers This library provides stochastic differential equation (SDE) solvers with GPU support and efficie
Fast, general, and tested differentiable structured prediction in PyTorch
Torch-Struct: Structured Prediction Library A library of tested, GPU implementations of core structured prediction algorithms for deep learning applic
Pretrained EfficientNet, EfficientNet-Lite, MixNet, MobileNetV3 / V2, MNASNet A1 and B1, FBNet, Single-Path NAS
(Generic) EfficientNets for PyTorch A 'generic' implementation of EfficientNet, MixNet, MobileNetV3, etc. that covers most of the compute/parameter ef
Rembg Video Virtual Green Screen Edition
Rembg Virtual Greenscreen Edition is a tool to create a green screen matte for videos
Decentralized deep learning in PyTorch. Built to train models on thousands of volunteers across the world.
Hivemind: decentralized deep learning in PyTorch Hivemind is a PyTorch library to train large neural networks across the Internet. Its intended usage
Petastorm library enables single machine or distributed training and evaluation of deep learning models from datasets in Apache Parquet format. It supports ML frameworks such as Tensorflow, Pytorch, and PySpark and can be used from pure Python code.
Petastorm Contents Petastorm Installation Generating a dataset Plain Python API Tensorflow API Pytorch API Spark Dataset Converter API Analyzing petas
AtsPy: Automated Time Series Models in Python (by @firmai)
Automated Time Series Models in Python (AtsPy) SSRN Report Easily develop state of the art time series models to forecast univariate data series. Simp
Automatically build ARIMA, SARIMAX, VAR, FB Prophet and XGBoost Models on Time Series data sets with a Single Line of Code. Now updated with Dask to handle millions of rows.
Auto_TS: Auto_TimeSeries Automatically build multiple Time Series models using a Single Line of Code. Now updated with Dask. Auto_timeseries is a comp
A python library for easy manipulation and forecasting of time series.
Time Series Made Easy in Python darts is a python library for easy manipulation and forecasting of time series. It contains a variety of models, from
Probabilistic time series modeling in Python
GluonTS - Probabilistic Time Series Modeling in Python GluonTS is a Python toolkit for probabilistic time series modeling, built around Apache MXNet (
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.
pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se
ARCH models in Python
arch Autoregressive Conditional Heteroskedasticity (ARCH) and other tools for financial econometrics, written in Python (with Cython and/or Numba used
Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment. With Qlib, you can easily try your ideas to create better Quant investment strategies.
Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technol
An easier way to build neural search on the cloud
An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample
Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨
WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)
Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control
PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro